965 resultados para Lean startup approach
Resumo:
There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. Among them, CVTree method, feature frequency profiles method and dynamical language approach were used to investigate the whole-proteome phylogeny of large dsDNA viruses. Using the data set of large dsDNA viruses from Gao and Qi (BMC Evol. Biol. 2007), the phylogenetic results based on the CVTree method and the dynamical language approach were compared in Yu et al. (BMC Evol. Biol. 2010). In this paper, we first apply dynamical language approach to the data set of large dsDNA viruses from Wu et al. (Proc. Natl. Acad. Sci. USA 2009) and compare our phylogenetic results with those based on the feature frequency profiles method. Then we construct the whole-proteome phylogeny of the larger dataset combining the above two data sets. According to the report of The International Committee on the Taxonomy of Viruses (ICTV), the trees from our analyses are in good agreement to the latest classification of large dsDNA viruses.
Resumo:
The function of a protein can be partially determined by the information contained in its amino acid sequence. It can be assumed that proteins with similar amino acid sequences normally have closer functions. Hence analysing the similarity of proteins has become one of the most important areas of protein study. In this work, a layered comparison method is used to analyze the similarity of proteins. It is based on the empirical mode decomposition (EMD) method, and protein sequences are characterized by the intrinsic mode functions (IMFs). The similarity of proteins is studied with a new cross-correlation formula. It seems that the EMD method can be used to detect the functional relationship of two proteins. This kind of similarity method is a complement of traditional sequence similarity approaches which focus on the alignment of amino acids
Resumo:
This study started with the aim to develop an approach that will help designers create interfaces that are more intuitive for older adults to use. Two objectives were set for this study: 1) to investigate one of the possible strategies for developing intuitive interfaces for older people, and; 2) to investigate factors that could interfere with intuitive use. This paper briefly presents the outcome of the two experiments and how it has lead to the development of an adaptable interface design model that will help designers develop interfaces that are intuitive to learn and, over time, intuitive to use for users with diverse technology prior experience and cognitive abilities.
Resumo:
Reported homocysteine (HCY) concentrations in human serum show poor concordance amongst laboratories due to endogenous HCY in the matrices used for assay calibrators and QCs. Hence, we have developed a fully validated LC–MS/MS method for measurement of HCY concentrations in human serum samples that addresses this issue by minimising matrix effects. We used small volumes (20 μL) of 2% Bovine Serum Albumin (BSA) as surrogate matrix for making calibrators and QCs with concentrations adjusted for the endogenous HCY concentration in the surrogate matrix using the method of standard additions. To aliquots (20 μL) of human serum samples, calibrators or QCs, were added HCY-d4 (internal standard) and tris-(2-carboxyethyl) phosphine hydrochloride (TCEP) as reducing agent. After protein precipitation, diluted supernatants were injected into the LC–MS/MS. Calibration curves were linear; QCs were accurate (5.6% deviation from nominal), precise (CV% ≤ 9.6%), stable for four freeze–thaw cycles, and when stored at room temperature for 5 h or at −80 °C (27 days). Recoveries from QCs in surrogate matrix or pooled human serum were 91.9 and 95.9%, respectively. There was no matrix effect using 6 different individual serum samples including one that was haemolysed. Our LC–MS/MS method has satisfied all of the validation criteria of the 2012 EMA guideline.
Resumo:
This book is about understanding the nature and application of reflection in higher education. It provides a theoretical model to guide the implementation of reflective learning and reflective practice across multiple disciplines and international contexts in higher education. The book presents research into the ways in which reflection is both considered and implemented in different ways across different professional disciplines, while maintaining a common purpose to transform and improve learning and/or practice. Readers will find this book innovative and new in three key ways. First, in its holistic theorisation of reflection within the pedagogic field of higher education; Secondly, in conceptualising reflection in different modes to achieve specific purposes in different disciplines; and finally, in providing conceptual guidance for embedding reflective learning and reflective practice in a systematic way across whole programmes, faculties or institutions in higher education. The book considers important contextual factors that influence the teaching of forms and methods of reflection. It provides a functional analysis of multiple modes of reflection, including written, oral, visual, auditory, and embodied forms. Empirical chapters analyse the application of these modes across disciplines and at different stages of a programme. The theoretical model accounts for students’ stage of development in the disciplinary field, along with progressive and cyclical levels of higher order thinking, and learning and professional practice that are expected within different disciplines and professional fields. The book provides: • A conceptual model for the application of reflection across disciplines in a variety of contexts. • Empirical examples of different modes and pedagogic patterns for reflection. • Guidance and support for embedding systemic pedagogical and curriculum change.
Resumo:
Knowledge management (KM) strategy is the planned or actual coordination of a firm's major goals and learning in time; this coordination continually co-aligns the firm's knowledge-based resources with the environment. Based on the organic perspective of strategy, a KM performance evaluation approach should be able to 1) review the knowledge governance mechanisms and learning routines that underpin the KM strategy, as well as the performance outcomes driven by the strategy, and 2) predict the evolution of performance drivers and outcomes into the future to facilitate strategic planning. This study combined a survey study and a system dynamics (SD) simulation to demonstrate the transformation from a mechanistic to an organic perspective on KM strategy and performance evaluation. The survey study was conducted based on a sample of 143 construction contractors and used structural equation modeling (SEM) techniques to develop a KM performance index for reviewing the key elements that underpin KM strategy. The SD simulation predicted the development of KM strategy configurations and the evolution of KM performance over time. The organic KM performance evaluation approach demonstrated by this study has significant potential to improve the alignment of KM strategy within an increasingly dynamic business environment.
Resumo:
Background Randomised controlled trials may be of limited use to evaluate the multidisciplinary and multimodal interventions required to effectively treat complex patients in routine clinical practice; pragmatic action research approaches may provide a suitable alternative. Methods A multiphase, pragmatic, action research based approach was developed to identify and overcome barriers to nutritional care in patients admitted to a metropolitan hospital hip-fracture unit. Results Four sequential action research cycles built upon baseline data including 614 acute hip-fracture inpatients and 30 purposefully sampled clinicians. Reports from Phase I identified barriers to nutrition screening and assessment. Phase II reported post-fracture protein-energy intakes and intake barriers. Phase III built on earlier results; an explanatory mixed-methods study expanded and explored additional barriers and facilitators to nutritional care. Subsequent changes to routine clinical practice were developed and implemented by the treating team between Phase III and IV. These were implemented as a new multidisciplinary, multimodal nutritional model of care. A quasi-experimental controlled, ‘before-and-after’ study was then used to compare the new model of care with an individualised nutritional care model. Engagement of the multidisciplinary team in a multiphase, pragmatic action research intervention doubled energy and protein intakes, tripled return home discharge rates, and effected a 75% reduction in nutritional deterioration during admission in a reflective cohort of hip-fracture inpatients. Conclusions This approach allowed research to be conducted as part of routine clinical practice, captured a more representative patient cohort than previously reported studies, and facilitated exploration of barriers and engagement of the multidisciplinary healthcare workers to identify and implement practical solutions. This study demonstrates substantially different findings to those previously reported, and is the first to demonstrate that multidisciplinary, multimodal nutrition care reduces intake barriers, delivers a higher proportional increase in protein and energy intake compared with baseline than other published intervention studies, and improves patient outcomes when compared with individualised nutrition care. The findings are considered highly relevant to clinical practice and have high translation validity. The authors strongly encourage the development of similar study designs to investigate complex health problems in elderly, multi-morbid patient populations as a way to evaluate and change clinical practice.
Resumo:
Numerous efforts have been dedicated to the synthesis of large-volume methacrylate monoliths for large-scale biomolecules purification but most were obstructed by the enormous release of exotherms during preparation, thereby introducing structural heterogeneity in the monolith pore system. A significant radial temperature gradient develops along the monolith thickness, reaching a terminal temperature that supersedes the maximum temperature required for structurally homogenous monoliths preparation. The enormous heat build-up is perceived to encompass the heat associated with initiator decomposition and the heat released from free radical-monomer and monomer-monomer interactions. The heat resulting from the initiator decomposition was expelled along with some gaseous fumes before commencing polymerization in a gradual addition fashion. Characteristics of 80 mL monolith prepared using this technique was compared with that of a similar monolith synthesized in a bulk polymerization mode. An extra similarity in the radial temperature profiles was observed for the monolith synthesized via the heat expulsion technique. A maximum radial temperature gradient of only 4.3°C was recorded at the center and 2.1°C at the monolith peripheral for the combined heat expulsion and gradual addition technique. The comparable radial temperature distributions obtained birthed identical pore size distributions at different radial points along the monolith thickness.
Resumo:
The extent of exothermicity associated with the construction of large-volume methacrylate monolithic columns has somewhat obstructed the realisation of large-scale rapid biomolecule purification especially for plasmid-based products which have proven to herald future trends in biotechnology. A novel synthesis technique via a heat expulsion mechanism was employed to prepare a 40 mL methacrylate monolith with a homogeneous radial pore structure along its thickness. Radial temperature gradient was recorded to be only 1.8 °C. Maximum radial temperature recorded at the centre of the monolith was 62.3 °C, which was only 2.3 °C higher than the actual polymerisation temperature. Pore characterisation of the monolithic polymer showed unimodal pore size distributions at different radial positions with an identical modal pore size of 400 nm. Chromatographic characterisation of the polymer after functionalisation with amino groups displayed a persistent dynamic binding capacity of 15.5 mg of plasmid DNA/mL. The maximum pressure drop recorded was only 0.12 MPa at a flow rate of 10 mL/min. The polymer demonstrated rapid separation ability by fractionating Escherichia coli DH5α-pUC19 clarified lysate in only 3 min after loading. The plasmid sample collected after the fast purification process was tested to be a homogeneous supercoiled plasmid with DNA electrophoresis and restriction analysis.