961 resultados para Laplace Equation
Resumo:
This study extends previous media equation research, which showed that the effects of flattery from a computer can produce the same general effects as flattery from humans. Specifically, the study explored the potential moderating effect of experience on the impact of flattery from a computer. One hundred and fifty-eight students from the University of Queensland voluntarily participated in the study. Participants interacted with a computer and were exposed to one of three kinds of feedback: praise (sincere praise), flattery (insincere praise), or control (generic feedback). Questionnaire measures assessing participants' affective state. attitudes and opinions were taken. Participants of high experience, but not low experience, displayed a media equation pattern of results, reacting to flattery from a computer in a manner congruent with peoples' reactions to flattery from other humans. High experience participants tended to believe that the computer spoke the truth, experienced more positive affect as a result of flattery, and judged the computer's performance more favourably. These findings are interpreted in light of previous research and the implications for software design in fields such as entertainment and education are considered. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We obtain a diagonal solution of the dual reflection equation for the elliptic A(n-1)((1)) solid-on-solid model. The isomorphism between the solutions of the reflection equation and its dual is studied. (C) 2004 American Institute of Physics.
Resumo:
Capillary rise in porous media is frequently modeled using the Washburn equation. Recent accurate measurements of advancing fronts clearly illustrate its failure to describe the phenomenon in the long term. The observed underprediction of the position of the front is due to the neglect of dynamic saturation gradients implicit in the formulation of the Washburn equation. We consider an approximate solution of the governing macroscopic equation, which retains these gradients, and derive new analytical formulae for the position of the advancing front, its speed of propagation, and the cumulative uptake. The new solution properly describes the capillary rise in the long term, while the Washburn equation may be recovered as a special case. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A).
Resumo:
We extend the projected Gross-Pitaevskii equation formalism of Davis [Phys. Rev. Lett. 87, 160402 (2001)] to the experimentally relevant case of thermal Bose gases in harmonic potentials and outline a robust and accurate numerical scheme that can efficiently simulate this system. We apply this method to investigate the equilibrium properties of the harmonically trapped three-dimensional projected Gross-Pitaevskii equation at finite temperature and consider the dependence of condensate fraction, position, and momentum distributions and density fluctuations on temperature. We apply the scheme to simulate an evaporative cooling process in which the preferential removal of high-energy particles leads to the growth of a Bose-Einstein condensate. We show that a condensate fraction can be inferred during the dynamics even in this nonequilibrium situation.
Resumo:
We present Ehrenfest relations for the high temperature stochastic Gross-Pitaevskii equation description of a trapped Bose gas, including the effect of growth noise and the energy cutoff. A condition for neglecting the cutoff terms in the Ehrenfest relations is found which is more stringent than the usual validity condition of the truncated Wigner or classical field method-that all modes are highly occupied. The condition requires a small overlap of the nonlinear interaction term with the lowest energy single particle state of the noncondensate band, and gives a means to constrain dynamical artefacts arising from the energy cutoff in numerical simulations. We apply the formalism to two simple test problems: (i) simulation of the Kohn mode oscillation for a trapped Bose gas at zero temperature, and (ii) computing the equilibrium properties of a finite temperature Bose gas within the classical field method. The examples indicate ways to control the effects of the cutoff, and that there is an optimal choice of plane wave basis for a given cutoff energy. This basis gives the best reproduction of the single particle spectrum, the condensate fraction and the position and momentum densities.
Resumo:
A primary purpose of this research is to design a gradient coil that is planar in construction and can be inserted within existing infrastructure. The proposed wave equation method for the design of gradient coils is novel within the field. it is comprehensively shown how this method can be used to design the planar x-, y-, and z-gradient wire windings to produce the required magnetic fields within a certain domain. The solution for the cylindrical gradient coil set is also elucidated. The wave equation technique is compared with the well-known target held method to gauge the quality of resultant design. In the case of the planar gradient coil design, it is shown that using the new method, a set of compact gradient coils with large field of view can be produced. The final design is considerably smaller in dimension when compared with the design obtained using the target field method, and therefore the manufacturing costs and materials required are somewhat reduced.
Resumo:
We consider a type of quantum electromechanical system, known as the shuttle system, first proposed by Gorelik [Phys. Rev. Lett. 80, 4526 (1998)]. We use a quantum master equation treatment and compare the semiclassical solution to a full quantum simulation to reveal the dynamics, followed by a discussion of the current noise of the system. The transition between tunneling and shuttling regime can be measured directly in the spectrum of the noise. (c) 2006 American Institute of Physics.
Resumo:
We present a theory for a superfluid Fermi gas near the BCS-BEC crossover, including pairing fluctuation contributions to the free energy similar to that considered by Nozieres and Schmitt-Rink for the normal phase. In the strong coupling limit, our theory is able to recover the Bogoliubov theory of a weakly interacting Bose gas with a molecular scattering length very close to the known exact result. We compare our results with recent Quantum Monte Carlo simulations both for the ground state and at finite temperature. Excellent agreement is found for all interaction strengths where simulation results are available.
Resumo:
The Perk-Schultz model may be expressed in terms of the solution of the Yang-Baxter equation associated with the fundamental representation of the untwisted affine extension of the general linear quantum superalgebra U-q (gl(m/n)], with a multiparametric coproduct action as given by Reshetikhin. Here, we present analogous explicit expressions for solutions of the Yang-Baxter equation associated with the fundamental representations of the twisted and untwisted affine extensions of the orthosymplectic quantum superalgebras U-q[osp(m/n)]. In this manner, we obtain generalizations of the Perk-Schultz model.