966 resultados para IT-capabilities


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] This research provides a useful framework for identifying a small firms’ propensity to engage in entrepreneurial orientation. We examine the impact of the Entrepreneurial Orientation (EO) as a main resource and capability on small firm’ growth. The growth seems to come out as an important demonstration of the entrepreneurial orientation of small firms (Davidsson, 1989; Green and Brown, 1997; Janney and Gregory, 2006). Thus, this research builds on prior conceptual research that suggests a positive integration between entrepreneurial orientation and resource-based view. In the first instance, the research will focus on reviewing literature in the emerging area of entrepreneurial orientation as it applies to growth oriented small firms and resource-based view of the firm. Secondly, an empirical study was developed based on a stratified sample of small firms of manufacturing industry. Data were submitted to a multivariate statistical analysis and a linear regression model was performed in order to predict the influence of the resources and capabilities on small firms’ growth. In this sense, we consider the construct growth as a dependent variable and the ones relates with resources and capabilities (entrepreneur resources, firm resources, networks and EO) as independent variables. The research results suggest a set of resources and capabilities that promote the growth of the small firms. Also, the EO seems to have a predictive value on growth. Explaining variables related with resources and capabilities and EO were identified as essential in growth oriented small firms. It was still possible to conclude that the entrepreneurial firms which grew seem to have resources and develop more capabilities and take advantage in the search for those competences. This attitude reflects on the EO of the firm. This study has important implication for both researchers and practitioners. It highlights the necessity of firms to develop superior EO of all their members and also to invest on better resources and consequently superior capabilities as a way of reaching higher levels of growth. While previous authors have attempted to analyse certain aspects of this process (linkage between entrepreneurial orientation and growth), this research developed a framework that combines these and others factors (resource-based view) pertinent to growth oriented small firms. The results support the necessity to identify explicative variables of multiple levels to explain the growth of small firms. The adoption of an entrepreneurial orientation as an indispensable variable to the growth oriented small firms seems pertinent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES] El sector de la construcción tiene, en España, una notable importancia, por su aportación al PIB (del entorno del 10%) y al empleo (en torno al 10%) y porque aglutina un amplio tejido empresarial. El deterioro de la situación económica y la saturación del mercado residencial han llevado a una fuerte contracción de la actividad constructiva, después una larga época de crecimiento.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ADMB2R is a collection of AD Model Builder routines for saving complex data structures into a file that can be read in the R statistics environment with a single command.1 ADMB2R provides both the means to transfer data structures significantly more complex than simple tables, and an archive mechanism to store data for future reference. We developed this software because we write and run computationally intensive numerical models in Fortran, C++, and AD Model Builder. We then analyse results with R. We desired to automate data transfer to speed diagnostics during working-group meetings. We thus developed the ADMB2R interface to write an R data object (of type list) to a plain-text file. The master list can contain any number of matrices, values, dataframes, vectors or lists, all of which can be read into R with a single call to the dget function. This allows easy transfer of structured data from compiled models to R. Having the capacity to transfer model data, metadata, and results has sharply reduced the time spent on diagnostics, and at the same time, our diagnostic capabilities have improved tremendously. The simplicity of this interface and the capabilities of R have enabled us to automate graph and table creation for formal reports. Finally, the persistent storage in files makes it easier to treat model results in analyses or meta-analyses devised months—or even years—later. We offer ADMB2R to others in the hope that they will find it useful. (PDF contains 30 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C2R is a collection of C routines for saving complex data structures into a file that can be read in the R statistics environment with a single command.1 C2R provides both the means to transfer data structures significantly more complex than simple tables, and an archive mechanism to store data for future reference. We developed this software because we write and run computationally intensive numerical models in Fortran, C++, and AD Model Builder. We then analyse results with R. We desired to automate data transfer to speed diagnostics during working-group meetings. We thus developed the C2R interface to write an R data object (of type list) to a plain-text file. The master list can contain any number of matrices, values, dataframes, vectors or lists, all of which can be read into R with a single call to the dget function. This allows easy transfer of structured data from compiled models to R. Having the capacity to transfer model data, metadata, and results has sharply reduced the time spent on diagnostics, and at the same time, our diagnostic capabilities have improved tremendously. The simplicity of this interface and the capabilities of R have enabled us to automate graph and table creation for formal reports. Finally, the persistent storage in files makes it easier to treat model results in analyses or meta-analyses devised months—or even years—later. We offer C2R to others in the hope that they will find it useful. (PDF contains 27 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For2R is a collection of Fortran routines for saving complex data structures into a file that can be read in the R statistics environment with a single command.1 For2R provides both the means to transfer data structures significantly more complex than simple tables, and an archive mechanism to store data for future reference. We developed this software because we write and run computationally intensive numerical models in Fortran, C++, and AD Model Builder. We then analyse results with R. We desired to automate data transfer to speed diagnostics during working-group meetings. We thus developed the For2R interface to write an R data object (of type list) to a plain-text file. The master list can contain any number of matrices, values, dataframes, vectors or lists, all of which can be read into R with a single call to the dget function. This allows easy transfer of structured data from compiled models to R. Having the capacity to transfer model data, metadata, and results has sharply reduced the time spent on diagnostics, and at the same time, our diagnostic capabilities have improved tremendously. The simplicity of this interface and the capabilities of R have enabled us to automate graph and table creation for formal reports. Finally, the persistent storage in files makes it easier to treat model results in analyses or meta-analyses devised months—or even years—later. We offer For2R to others in the hope that they will find it useful. (PDF contains 31 pages)