1000 resultados para IPNV detection
Resumo:
In this work, a previously-developed, statistical-based, damage-detection approach was validated for its ability to autonomously detect damage in bridges. The damage-detection approach uses statistical differences in the actual and predicted behavior of the bridge caused under a subset of ambient trucks. The predicted behavior is derived from a statistics-based model trained with field data from the undamaged bridge (not a finite element model). The differences between actual and predicted responses, called residuals, are then used to construct control charts, which compare undamaged and damaged structure data. Validation of the damage-detection approach was achieved by using sacrificial specimens that were mounted to the bridge and exposed to ambient traffic loads and which simulated actual damage-sensitive locations. Different damage types and levels were introduced to the sacrificial specimens to study the sensitivity and applicability. The damage-detection algorithm was able to identify damage, but it also had a high false-positive rate. An evaluation of the sub-components of the damage-detection methodology and methods was completed for the purpose of improving the approach. Several of the underlying assumptions within the algorithm were being violated, which was the source of the false-positives. Furthermore, the lack of an automatic evaluation process was thought to potentially be an impediment to widespread use. Recommendations for the improvement of the methodology were developed and preliminarily evaluated. These recommendations are believed to improve the efficacy of the damage-detection approach.
Resumo:
"Technical challenges exist with infrastructure that can be addressed by nondestructive evaluation (NDE) methods, such as detecting corrosion damage to reinforcing steel that anchor concrete bridge railings to bridge road decks. Moisture and chloride ions reach the anchors along the cold joint between the rails and deck, causing corrosion that weakens the anchors and ultimately the barriers. The Center for Nondestructive Evaluation at Iowa State University has experience in development of measurement techniques and new sensors using a variety of interrogating energies. This research evaluated feasibility of three technologies — x-ray radiation, ground-penetrating radar (GPR), and magnetic flux leakage (MFL) — for detection and quantification of corrosion of embedded reinforcing steel. Controlled samples containing pristine reinforcing steel with and without epoxy and reinforcing steel with 25 percent and 50 percent section reduction were embedded in concrete at 2.5 in. deep for laboratory evaluation. Two of the techniques, GPR and MFL, were used in a limited field test on the Iowa Highway 210 Bridge over Interstate 35 in Story County. The methods provide useful and complementary information. GPR provides a rapid approach to identify reinforcing steel that has anomalous responses. MFL provides similar detection responses but could be optimized to provide more quantitative correlation to actual condition. Full implementation could use either GPR or MFL methods to identify areas of concern, followed by radiography to give a visual image of the actual condition, providing the final guidance for maintenance actions." The full 103 page report and the 2 page Tech Transfer Summary are included in this link.
Resumo:
The CREB-binding protein (CBP) is a large nuclear protein that regulates many signal transduction pathways and is involved in chromatin-mediated transcription. The translocation t(8;16)(p11;p13.3) consistently disrupts two genes: the CBP gene on chromosome band 16p13.3 and the MOZ gene on chromosome band 8p11. Although a fusion of these two genes as a result of the translocation is expected, attempts at detecting the fusion transcript by reverse transcriptase polymerase chain reaction (RT-PCR) have proven difficult; to date, only one in-frame CBP/MOZ fusion transcript has been reported. We therefore sought other reliable means of detecting CBP rearrangements. We applied fluorescence in situ hybridization (FISH) and Southern blot analyses to a series of AML patients with a t(8;16) and detected DNA rearrangements of both the CBP and the MOZ loci in all cases tested. All six cases examined for CBP rearrangements have breakpoints within a 13 kb breakpoint cluster region at the 5' end of the CBP gene. Additionally, we used a MOZ cDNA probe to construct a surrounding cosmid contig and detect DNA rearrangements in three t(8;16) cases, all of which display rearrangements within a 6 kb genomic fragment of the MOZ gene. We have thus developed a series of cosmid probes that consistently detect the disruption of the CBP gene in t(8;16) patients. These clones could potentially be used to screen other cancer-associated or congenital translocations involving chromosome band 16p13.3 as well.
Resumo:
This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.
Resumo:
Seismic methods used in the study of snow avalanches may be employed to detect and characterize landslides and other mass movements, using standard spectrogram/sonogram analysis. For snow avalanches, the spectrogram for a station that is approached by a sliding mass exhibits a triangular time/frequency signature due to an increase over time in the higher-frequency constituents. Recognition of this characteristic footprint in a spectrogram suggests a useful metric for identifying other mass-movement events such as landslides. The 1 June 2005 slide at Laguna Beach, California is examined using data obtained from the Caltech/USGS Regional Seismic Network. This event exhibits the same general spectrogram features observed in studies of Alpine snow avalanches. We propose that these features are due to the systematic relative increase in high-frequency energy transmitted to a seismometer in the path of a mass slide owing to a reduction of distance from the source signal. This phenomenon is related to the path of the waves whose high frequencies are less attenuated as they traverse shorter source-receiver paths. Entrainment of material in the course of the slide may also contribute to the triangular time/frequency signature as a consequence of the increase in the energy involved in the process; in this case the contribution would be a source effect. By applying this commonly observed characteristic to routine monitoring algorithms, along with custom adjustments for local site effects, we seek to contribute to the improvement in automatic detection and monitoring methods of landslides and other mass movements.
Resumo:
Terrestrial laser scanning (TLS) is one of the most promising surveying techniques for rockslope characterization and monitoring. Landslide and rockfall movements can be detected by means of comparison of sequential scans. One of the most pressing challenges of natural hazards is combined temporal and spatial prediction of rockfall. An outdoor experiment was performed to ascertain whether the TLS instrumental error is small enough to enable detection of precursory displacements of millimetric magnitude. This consists of a known displacement of three objects relative to a stable surface. Results show that millimetric changes cannot be detected by the analysis of the unprocessed datasets. Displacement measurement are improved considerably by applying Nearest Neighbour (NN) averaging, which reduces the error (1¿) up to a factor of 6. This technique was applied to displacements prior to the April 2007 rockfall event at Castellfollit de la Roca, Spain. The maximum precursory displacement measured was 45 mm, approximately 2.5 times the standard deviation of the model comparison, hampering the distinction between actual displacement and instrumental error using conventional methodologies. Encouragingly, the precursory displacement was clearly detected by applying the NN averaging method. These results show that millimetric displacements prior to failure can be detected using TLS.
Resumo:
Waddlia chondrophila is considered as an emerging human pathogen likely involved in miscarriage and lower respiratory tract infections. Given the low sensitivity of cell culture to recover such an obligate intracellular bacteria, molecular-based diagnostic approaches are warranted. We thus developed a real-time PCR that amplifies Waddlia chondrophila DNA. Specific primers and probe were selected to target the 16S rRNA gene. The PCR specifically amplified W. chondrophila but did not amplify other related-bacteria such as Parachlamydia acanthamoebae, Simkania negevensis and Chlamydia pneumoniae. The PCR exhibited a good intra-run and inter-run reproducibility and a sensitivity of less than ten copies of the positive control. This real-time PCR was then applied to 32 nasopharyngeal aspirates taken from children with bronchiolitis not due to respiratory syncytial virus (RSV). Three samples revealed to be Waddlia positive, suggesting a possible role of this Chlamydia-related bacteria in this setting.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) usually harbors a vancomycin-susceptible phenotype (VSSA) but can exhibit reduced vancomycin susceptibility phenotypes that can be heterogeneous-intermediate (hVISA), intermediate (VISA), or fully resistant (VRSA). Current detection techniques (e.g., Etest and population analysis profiles [PAPs]) are slow and time-consuming. We investigated the potential of microcalorimetry to detect reduced susceptibilities to vancomycin in MRSA strains. Representative MSSA, VSSA, hVISA, VISA, and VRSA reference strains, as well as clinical isolates, were used. PAPs were performed by standard methods. Microcalorimetry was performed by inoculating 5 × 10(7) CFU of overnight cultures into 3-ml vials of brain heart infusion broth supplemented with increasing concentrations of vancomycin, and growth-related heat production was measured at 37°C. For the reference strains, no heat production was detected in the VSSA isolates at vancomycin concentrations of >3 μg/ml during the 72 h of incubation. The hVISA and VISA strains showed heat production with concentration-proportional delays of up to 6 μg/ml in 48 h and up to 12 μg/ml in 72 h, respectively. The VRSA strain showed heat production at concentrations up to 16 μg/ml in 12 h. The testing of clinical strains indicated an excellent negative predictive value, allowing us to rule out a decreased vancomycin susceptibility phenotype in <8 h of incubation. Sequential isolates from a patient undergoing vancomycin therapy showed evolving microcalorimetric profiles up to a VISA phenotype. Microcalorimetry was able to detect strains with reduced susceptibilities to vancomycin in <8 h. The measurement of bacterial heat production might represent a simple and rapid method for the detection of reduced susceptibilities to vancomycin in MRSA strains.
Resumo:
Comment on: Hassan C, Di Giulio E, Pickhardt PJ, Zullo A, Laghi A, Kim DH, Iafrate F, Morini S. Cost effectiveness of colonoscopy, based on the appropriateness of an indication. Clin Gastroenterol Hepatol. 2008 Nov;6(11):1231-6.
Resumo:
We have developed a thrombin-sensitive polymeric photosensitizer prodrug (T-PS) to selectively image and eradicate inflammatory lesions in rheumatoid arthritis (RA). Thrombin is a serine protease up-regulated in synovial tissues of rheumatoid arthritis (RA) patients. T-PS consists of a polymeric backbone, to which multiple photosensitizer (PS) units are tethered via short thrombin-cleavable peptide linkers. Fluorescence emission and phototoxicity of the prodrug are efficiently quenched due to the interaction of neighboring photosensitizer units. The prodrug is passively delivered to the inflammation site via the enhanced permeability and retention (EPR) effect. Subsequent site-selective proteolytic cleavage of the peptide linkers restores its photoactivity by increasing the mutual distance between PS. Whole animal imaging in murine collagen-induced arthritis, an experimental model of RA revealed a dose-dependent fluorescence increase in arthritic paws after systemic prodrug injection. In addition, administration of T-PS resulted in much higher fluorescence selectivity for arthritic joints as compared to the free PS. Irradiation of the arthritic joints induced light dose dependent phototoxic effects such as apoptosis, vascular damage and local hemorrhage. Long-term observations showed complete regression of the latter. Irradiated non-arthritic tissues or non-irradiated arthritic tissues showed no histological effects after photodynamic therapy with T-PS. This illustrates that T-PS can localize inflammatory lesions with excellent selectivity and induce apoptosis and vascular shut down after irradiation.
Resumo:
OBJECTIVE(S): To investigate the relationship between detection of HIV drug resistance by 2 years from starting antiretroviral therapy and the subsequent risk of progression to AIDS and death. DESIGN: Virological failure was defined as experiencing two consecutive viral loads of more than 400 copies/ml in the time window between 0.5 and 2 years from starting antiretroviral therapy (baseline). Patients were grouped according to evidence of virological failure and whether there was detection of the International AIDS Society resistance mutations to one, two or three drug classes in the time window. METHODS: Standard survival analysis using Kaplan-Meier curves and Cox proportional hazards regression model with time-fixed covariates defined at baseline was employed. RESULTS: We studied 8229 patients in EuroSIDA who started antiretroviral therapy and who had at least 2 years of clinical follow-up. We observed 829 AIDS events and 571 deaths during 38,814 person-years of follow-up resulting in an overall incidence of new AIDS and death of 3.6 per 100 person-years of follow-up [95% confidence interval (CI):3.4-3.8]. By 96 months from baseline, the proportion of patients with a new AIDS diagnosis or death was 20.3% (95% CI:17.7-22.9) in patients with no evidence of virological failure and 53% (39.3-66.7) in those with virological failure and mutations to three drug classes (P = 0.0001). An almost two-fold difference in risk was confirmed in the multivariable analysis (adjusted relative hazard = 1.8, 95% CI:1.2-2.7, P = 0.005). CONCLUSION: Although this study shows an association between the detection of resistance at failure and risk of clinical progression, further research is needed to clarify whether resistance reflects poor adherence or directly increases the risk of clinical events via exhaustion of drug options.
Resumo:
OBJECTIVE: Plasma adiponectin is strongly associated with various components of metabolic syndrome, type 2 diabetes and cardiovascular outcomes. Concentrations are highly heritable and differ between men and women. We therefore aimed to investigate the genetics of plasma adiponectin in men and women. METHODS: We combined genome-wide association scans of three population-based studies including 4659 persons. For the replication stage in 13795 subjects, we selected the 20 top signals of the combined analysis, as well as the 10 top signals with p-values less than 1.0 x 10(-4) for each the men- and the women-specific analyses. We further selected 73 SNPs that were consistently associated with metabolic syndrome parameters in previous genome-wide association studies to check for their association with plasma adiponectin. RESULTS: The ADIPOQ locus showed genome-wide significant p-values in the combined (p=4.3 x 10(-24)) as well as in both women- and men-specific analyses (p=8.7 x 10(-17) and p=2.5 x 10(-11), respectively). None of the other 39 top signal SNPs showed evidence for association in the replication analysis. None of 73 SNPs from metabolic syndrome loci exhibited association with plasma adiponectin (p>0.01). CONCLUSIONS: We demonstrated the ADIPOQ gene as the only major gene for plasma adiponectin, which explains 6.7% of the phenotypic variance. We further found that neither this gene nor any of the metabolic syndrome loci explained the sex differences observed for plasma adiponectin. Larger studies are needed to identify more moderate genetic determinants of plasma adiponectin.
Resumo:
The objective of this work was to develop a low-cost portable damage detection tool to assess and predict damage areas in highway bridges. The proposed tool was based on standard vibration-based damage identification (VBDI) techniques but was extended to a new approach based on operational traffic load. The methodology was tested using numerical simulations, laboratory experiments, and field testing.
Resumo:
The biocontrol activity of the root-colonizing Pseudomonas fluorescens strain CHA0 is largely determined by the production of antifungal metabolites, especially 2,4-diacetylphloroglucinol. The expression of these metabolites depends on abiotic and biotic environmental factors, in particular, elements present in the rhizosphere. In this study, we have developed a new method for the in situ analysis of antifungal gene expression using flow cytometry combined with green fluorescent protein (GFP)-based reporter fusions to the phlA and prnA genes essential for the production of the antifungal compounds 2,4-diacetylphloroglucinol and pyrrolnitrin, respectively, in strain CHA0. Expression of phlA-gfp and prnA-gfp in CHA0 cells harvested from the rhizosphere of a set of plant species as well as from the roots of healthy, leaf pathogen-attacked, and physically stressed plants were analyzed using a FACSCalibur. After subtraction of background fluorescence emitted by plant-derived particles and CHA0 cells not carrying the gfp reporters, the average gene expression per bacterial cell could be calculated. Levels of phlA and prnA expression varied significantly in the rhizospheres of different plant species. Physical stress and leaf pathogen infection lowered phlA expression levels in the rhizosphere of cucumber. Our results demonstrate that the newly developed approach is suitable to monitor differences in levels of antifungal gene expression in response to various plant-derived factors. An advantage of the method is that it allows quantification of bacterial gene expression in rhizosphere populations at a single-cell level. To our best knowledge, this is the first study using flow cytometry for the in situ analysis of biocontrol gene expression in a plant-beneficial bacterium in the rhizosphere.