968 resultados para Formation Mechanisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blood and lymphatic vascular systems are essential for life, but they may become harnessed for sinister purposes in pathological conditions. For example, tumors learn to grow a network of blood vessels (angiogenesis), securing a source of oxygen and nutrients for sustained growth. On the other hand, damage to the lymph nodes and the collecting lymphatic vessels may lead to lymphedema, a debilitating condition characterized by peripheral edema and susceptibility to infections. Promoting the growth of new lymphatic vessels (lymphangiogenesis) is an attractive approach to treat lymphedema patients. Angiopoietin-1 (Ang1), a ligand for the endothelial receptor tyrosine kinases Tie1 and Tie2. The Ang1/Tie2 pathway has previously been implicated in promoting endothelial stability and integrity of EC monolayers. The studies presented here elucidate a novel function for Ang1 as a lymphangiogenic factor. Ang1 is known to decrease the permeability of blood vessels, and could thus act as a more global antagonist of plasma leakage and tissue edema by promoting growth of lymphatic vessels and thereby facilitating removal of excess fluid and other plasma components from the interstitium. These findings reinforce the idea that Ang1 may have therapeutic value in conditions of tissue edema. VEGFR-3 is present on all endothelia during development, but in the adult its expression becomes restricted to the lymphatic endothelium. VEGF-C and VEGF-D are ligands for VEGFR-3, and potently promote lymphangiogenesis in adult tissues, with direct and remarkably specific effects on the lymphatic endothelium in adult tissues. The data presented here show that VEGF-C and VEGF-D therapy can restore collecting lymphatic vessels in a novel orthotopic model of breast cancer-related lymphedema. Furthermore, the study introduces a novel approach to improve VEGF-C/VEGF-D therapy by using engineered heparin-binding forms of VEGF-C, which induced the rapid formation of organized lymphatic vessels. Importantly, VEGF-C therapy also greatly improved the survival and integration of lymph node transplants. The combination of lymph node transplantation and VEGF-C therapy provides a basis for future therapy of lymphedema. In adults, VEGFR-3 expression is restricted to the lymphatic endothelium and the fenestrated endothelia of certain endocrine organs. These results show that VEGFR-3 is induced at the onset of angiogenesis in the tip cells that lead the formation of new vessel sprouts, providing a tumor-specific vascular target. VEGFR-3 acts downstream of VEGF/VEGFR-2 signals, but, once induced, can sustain angiogenesis when VEGFR-2 signaling is inhibited. The data presented here implicate VEGFR-3 as a novel regulator of sprouting angiogenesis along with its role in regulating lymphatic vessel growth. Targeting VEGFR-3 may provide added efficacy to currently available anti-angiogenic therapeutics, which typically target the VEGF/VEGFR-2 pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paracrine regulation between the components of the tumour microenvironment cancer cells, activated fibroblasts, immune and endothelial cells is under intense investigation. The signals between the different cell types are mediated by soluble factors, such as growth factors, proinflammatory cytokines and proteolytic enzymes. Nemosis is an experimental in vitro model of fibroblast activation, leading to increased production of such mediators. Nemotic activation of fibroblasts occurs as they are forced to cluster thereby forming a multicellular spheroid. The aim of the present studies was to elucidate the mechanisms underlying the nemotic response of cancer-associated fibroblasts (CAF) and the role of nemosis in paracrine regulation between activated fibroblasts and benign and malignant epithelial cells. The results presented in this thesis demonstrate that the nemotic response of CAFs and normal fibroblasts differs, and inter-individual variations exist between fibroblast populations. In co-culture experiments, fibroblasts increased colony formation of squamous cell carcinoma (SCC) cells, and CAFs further augmented this, highlighting the tumour-evolving properties of CAFs. Furthermore, fibroblast monolayers in those co-cultures started to cluster spontaneously. This kind of spontaneous nemosis response might take place also in vivo, although more direct evidence of this still needs to be obtained. The HaCaT skin carcinoma progression model was used to study the effects of benign and malignant keratinocytes on fibroblast nemosis. Benign HaCaT cells inhibited fibroblast nemosis, observed as inhibition of cyclooxygenase 2 (COX-2) induction in nemotic spheroids. In contrast, malignant HaCaTs further augmented the nemotic response by increasing expression of COX-2 and the growth factors hepatocyte growth factor / scatter factor (HGF/SF) and vascular endothelial growth factor (VEGF), as well as causing a myofibroblastic differentiation of nemotic fibroblasts into fibroblasts resembling CAFs. On the other side of this reciprocal signalling, factors secreted into conditioned medium by the nemotic fibroblasts promoted proliferation and motility of the HaCaT cell lines. Notably, the nemotic fibroblast medium increased the expression of p63, a transcription factor linked to carcinogenesis, also in the highly metastatic HaCaT cells. These results emphasize the paracrine role of factors secreted by activated fibroblasts in driving tumour progression. We also investigated the epithelial-mesenchymal transition (EMT) of the HaCaT clones in response to transforming growth factor β (TGF-β), which is a well-characterized inducer of EMT. TGF-β caused growth arrest and loss of epithelial cell junctions in the HaCaT derivatives, but mesenchymal markers were not induced, suggesting a partial, but not complete EMT response. Inflammation induced by COX-2 has been proposed to be a key mechanism in EMT of benign cells. Corroborating this notion, COX-2 was induced only in benign, not in malignant HaCaT derivatives. Furthermore, in cells in which TGF-β caused COX-2 induction, migration was clearly augmented. The concept of treating cancer is changing from targeting solely the cancer cells to targeting the whole microenvironment. The results of this work emphasise the role of activated fibroblasts in cancer progression and that CAFs should also be taken into consideration in the treatment of cancer. The results from these studies suggests that nemosis could be used as a diagnostic tool to distinguish in vitro activated fibroblasts from tumour stroma and also in studying the paracrine signalling that is mediated to other cell types via soluble factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the treatment of most cancers has improved steadily, only few metastatic solid tumors can be cured. Despite responses, refractory clones often emerge and the disease becomes refractory to available treatment modalities. Furthermore, resistance factors are shared between different treatment regimens and therefore loss of response typically occurs rapidly, and there is a tendency for cross-resistance between agents. Therefore, new agents with novel mechanisms of action and lacking cross-resistance to currently available approaches are needed. Modified oncolytic adenoviruses, featuring cancer-celective cell lysis and spread, constitute an interesting drug platform towards the goals of tumor specificity and the implementation of potent multimodal treatment regimens. In this work, we demonstrate the applicability of capsid-modified, transcriptionally targeted oncolytic adenoviruses in targeting gastric, pancreatic and breast cancer. A variety of capsid modified adenoviruses were tested for transductional specificity first in gastric and pancreatic cancer cells and patient tissues and then in mice. Then, oncolytic viruses featuring the same capsid modifications were tested to confirm that successful transductional targeting translates into enhanced oncolytic potential. Capsid modified oncolytic viruses also prolonged the survival of tumor bearing orthotopic models of gastric and pancreatic cancer. Taken together, oncolytic adenoviral gene therapy could be a potent drug for gastric and pancreatic cancer, and its specificity, potency and safety can be modulated by means of capsid modification. We also characterized a new intraperitoneal virus delivery method in benefit for the persistence of gene delivery to intraperitoneal gastric and pancreatic cancer tumors. With a silica implant a steady and sustained virus release to the vicinity of the tumor improved the survival of the orthotopic tumor bearing mice. Furthermore, silica gel-based virus delivery lowered the toxicity mediating proimflammatory cytokine response and production of total and anti-adenovirus neutralizing antibodies (NAbs). On the other hand, silica shielded the virus against pre-excisting NAbs, resulting in a more favourable biodistribution in the preimmunized mice. The silica implant might therefore be of interest in treating intraperitoneally disseminated disease. Cancer stem cells are thought to be resistant to conventional cancer drugs and might play an important role in cancer relapse and the formation of metastasis. Therefore, we examined if transcriptionally modified oncolytic adenoviruses are able to kill these cells. Complete eradication of CD44+CD24-/low putative breast cancer stem cells was seen in vitro, and significant antitumor activity was detected in CD44+CD24-/low –derived tumor bearing mice. Thus, genetically engineered oncolytic adenoviruses have potential in destroying cancer initiating cells, which may have relevance for the elimination of cancer stem cells in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosomal alterations in leukemia have been shown to have prognostic and predictive significance and are also important minimal residual disease (MRD) markers in the follow-up of leukemia patients. Although specific oncogenes and tumor suppressors have been discovered in some of the chromosomal alterations, the role and target genes of many alterations in leukemia remain unknown. In addition, a number of leukemia patients have a normal karyotype by standard cytogenetics, but have variability in clinical course and are often molecularly heterogeneous. Cytogenetic methods traditionally used in leukemia analysis and diagnostics; G-banding, various fluorescence in situ hybridization (FISH) techniques, and chromosomal comparative genomic hybridization (cCGH), have enormously increased knowledge about the leukemia genome, but have limitations in resolution or in genomic coverage. In the last decade, the development of microarray comparative genomic hybridization (array-CGH, aCGH) for DNA copy number analysis and the SNP microarray (SNP-array) method for simultaneous copy number and loss of heterozygosity (LOH) analysis has enabled investigation of chromosomal and gene alterations genome-wide with high resolution and high throughput. In these studies, genetic alterations were analyzed in acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL). The aim was to screen and characterize genomic alterations that could play role in leukemia pathogenesis by using aCGH and SNP-arrays. One of the most important goals was to screen cryptic alterations in karyotypically normal leukemia patients. In addition, chromosomal changes were evaluated to narrow the target regions, to find new markers, and to obtain tumor suppressor and oncogene candidates. The work presented here shows the capability of aCGH to detect submicroscopic copy number alterations in leukemia, with information about breakpoints and genes involved in the alterations, and that genome-wide microarray analyses with aCGH and SNP-array are advantageous methods in the research and diagnosis of leukemia. The most important findings were the cryptic changes detected with aCGH in karyotypically normal AML and CLL, characterization of amplified genes in 11q marker chromosomes, detection of deletion-based mechanisms of MLL-ARHGEF12 fusion gene formation, and detection of LOH without copy number alteration in karyotypically normal AML. These alterations harbor candidate oncogenes and tumor suppressors for further studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple graphical method is presented for velocity and acceleration analysis of complex mechanisms possessing low or high degree of complexity. The method is iterative in character and generally yields the solution within a few iterations. Several examples have been worked out to illustrate the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three distinct coordination complexes, viz., [Co(imi)(2)(tmb)(2)] (1) [where imi = imidazole], {[Ni(tmb)(2)(H2O)(3)]center dot 2H(2)O}(n) (2) and [Cu-2(mu-tmb)(4)(CH3OH)(2)] (3), have been synthesized hydrothermally by the reactions of metal acetates,2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(H) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (11) ions and the 0 atoms of methanol coord geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity. The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in la, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented in this letter is a critical discussion of a recent paper on experimental investigation of the enthalpy, entropy and free energy of formation of gallium nitride (GaN) published in this journal [T.J. Peshek, J.C. Angus, K. Kash, J. Cryst. Growth 311 (2008) 185-189]. It is shown that the experimental technique employed detects neither the equilibrium partial pressure of N-2 corresponding to the equilibrium between Ga and GaN at fixed temperatures nor the equilibrium temperature at constant pressure of N-2. The results of Peshek et al. are discussed in the light of other information on the Gibbs energy of formation available in the literature. Entropy of GaN is derived from heat-capacity measurements. Based on a critical analysis of all thermodynamic information now available, a set of optimized parameters is identified and a table of thermodynamic data for GaN developed from 298.15 to 1400 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia due to cerebellar cortical atrophy, infantile- or childhood-onset bilateral cataracts, progressive myopathy, and mild to severe mental retardation. Additional features include hypergonadotropic hypogonadism, various skeletal abnormalities, short stature, and strabismus. The neuroradiologic hallmarks are hypoplasia of both the vermis and cerebellar hemispheres. The histopathologic findings include severe cerebellar atrophy and loss of Purkinje and granule cells. The common pathologic findings in muscle biopsy are variation in muscle fiber size, atrophic fibers, fatty replacement, and rimmed vacuole formation. The presence of marked cerebellar atrophy with myopathy distinguishes MSS from another rare syndrome, the congenital cataracts, facial dysmorphism, and neuropathy syndrome (CCFDN). Previously, work by others had resulted in the identification of an MSS locus on chromosome 5q31. A subtype of MSS with myoglobinuria and neuropathy had been linked to the CCFDN locus on chromosome 18qter, at which mutations in the CTDP1 gene had been identified. We confirmed linkage to the previously identified locus on chromosome 5q31 in two Finnish families with eight affected individuals, reduced the critical region by fine-mapping, and identified SIL1 as a gene underlying MSS. We found a common homozygous founder mutation in all Finnish patients. The same mutation was also present in patient samples from Norway and Sweden. Altogether, we identified eight mutations in SIL1, including nonsense, frameshift, splice site alterations, and one missense mutation. SIL1 encodes a nucleotide exchange factor for the endoplasmic reticulum (ER) resident heat-shock protein 70 chaperone GRP78. GRP78 functions in protein synthesis and quality control of the newly synthesized polypeptides. It senses and responds to stressful cellular conditions. We showed that in mice, SIL1 and GRP78 show highly similar spatial and temporal tissue expression in developing and mature brain, eye, and muscle. Studying endogenous proteins in mouse primary hippocampal neurons, we found that SIL1 and GRP78 colocalize and that SIL1 localizes to the ER. We studied the subcellular localization of two mutant proteins, a missense mutant found in two patients and an artificial mutant lacking the ER retrieval signal, and found that both mutant proteins formed aggregates within the ER. Well in line with our findings and the clinical features of MSS, recent work by Zhao et al. showed that a truncation of SIL1 causes ataxia and cerebellar Purkinje cell loss in the naturally occurring woozy mutant mouse. Prior to Purkinje cell degeneration, the unfolded protein response is initiated and abnormal protein accumulations are present. MSS thus joins the group of protein misfolding and accumulation diseases. These findings highlight the importance of SIL1 and the role of the ER in neuronal function and survival. The results presented in this thesis provide tools for the molecular genetic diagnostics of MSS and give a basis for future studies on the molecular pathogenesis of MSS. Understanding the mechanisms behind this pleiotropic syndrome may provide insights into more common forms of ataxia, myopathy, and neurodegeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rituximab, a monoclonal antibody against B-cell specific CD20 antigen, is used for the treatment of non-Hodgkin lymphomas (NHL) and chronic lymphatic leukemia. In combination with chemotherapeutics rituximab has remarkably improved the outcome of NHL patients, but a vast variation in the lengths of remissions remains and the outcome of individual patients is difficult to predict. This thesis has searched for an explanation for this by studying the effector mechanisms of rituximab and by comparing gene expression in lymphoma tissue samples of patients with long- and short-term survival. This work demonstrated that activation of complement (C) system is in vitro more efficient effector mechanism of rituximab than cellular mechanisms or apoptosis. Activation of the C system was also shown in vivo during rituximab treatment. However, intravenously administered rituximab could not enter the cerebrospinal fluid, and neither C activation nor removal of lymphoma cells was observed in central nervous system. In vitro cytotoxicity assays showed that rituximab-induced cell killing could be markedly improved with simultaneous neutralization of the C regulatory proteins CD46 (Membrane cofactor protein), CD55 (Decay-accelerating factor), and CD59 (protectin). In a retrospective study of follicular lymphoma (FL) patients, low lymphoma tissue mRNA expressions of CD59 and CD55 were associated with a good prognosis and in a progressive flow cytometry study high expression of CD20 relative to CD55 was correlated to a longer progression free survival. Gene expression profile analysis revealed that expression of certain often cell cycle, signal transduction or immune response related genes correlate with clinical outcome of FL patients. Emphasizing the role of tumor microenvironment the best differentiating genes Smad1 and EphA1 were demonstrated to be mainly expressed in the non-malignant cells of tumors. In conclusion, this thesis shows that activation of the C system is a clinically important effector mechanism of rituximab and that microenvironment factor in tumors and expression of C regulatory proteins affect markedly the efficacy of immunochemotherapy. This data can be used to identify more accurately the patients for whom immunochemotherapy is given. It may also be beneficial in development of rituximab-containing and other monoclonal antibody therapies against cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circulatory system comprises the blood vascular system and the lymphatic vascular system. These two systems function in parallel. Blood vessels form a closed system that delivers oxygen and nutrients to the tissues and removes waste products from the tissues, while lymphatic vessels are blind-ended tubes that collect extravasated fluid and cells from the tissues and return them back to blood circulation. Development of blood and lymphatic vascular systems occurs in series. Blood vessels are formed via vasculogenesis and angiogenesis whereas lymphatic vessels develop via lymphangiogenesis, after the blood vascular system is already functional. Members of the vascular endothelial growth factor (VEGF) family are regulators of both angiogenesis and lymphangiogenesis, while members of the platelet-derived growth factor (PDGF) family are major mitogens for pericytes and smooth muscle cells and regulate formation of blood vessels. Vascular endothelial growth factor C (VEGF-C) is the major lymphatic growth factor and signaling through its receptor vascular endothelial growth factor receptor 3 (VEGFR-3) is sufficient for lymphangiogenesis in adults. We studied the role of VEGF-C in embryonic lymphangiogenesis and showed that VEGF-C is absolutely required for the formation of lymph sacs from embryonic veins. VEGFR-3 is also required for normal development of the blood vascular system during embryogenesis, as Vegfr3 knockout mice die at mid-gestation due to failure in remodeling of the blood vessels. We showed that sufficient VEGFR-3 signaling in the embryo proper is required for embryonic angiogenesis and in a dosage-sensitive manner for embryonic lymphangiogenesis. Importantly, mice deficient in both VEGFR-3 ligands, Vegfc and Vegfd, developed a normal blood vasculature, suggesting VEGF-C- and VEGF-D- independent functions for VEGFR-3 in the early embryo. Platelet-derived growth factor B (PDGF-B) signals via PDGFR-b and regulates formation of blood vessels by recruiting pericytes and smooth muscle cells around nascent endothelial tubes. We showed that PDGF-B fails to induce lymphangiogenesis when overexpressed in adult mouse skin using adenoviral vectors. However, mouse embryos lacking Pdgfb showed abnormal lymphatic vessels, suggesting that PDGF-B plays a role in lymphatic vessel maturation and separation from blood vessels during embryogenesis. Lymphatic vessels play a key role in immune surveillance, fat absorption and maintenance of fluid homeostasis in the body. However, lymphatic vessels are also involved in various diseases, such as lymphedema and tumor metastasis. These studies elucidate the basic mechanisms of embryonic lymphangiogenesis and add to the knowledge of lymphedema and tumor metastasis treatments by giving novel insights into how lymphatic vessel growth could be induced (in lymphedema) or inhibited (in tumor metastasis).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The von Hippel-lindau (VHL) disease is a dominantly inherited neoplastic disorder which predisposes patients to multiple tumours including capillary haemangioblastomas (CHBs), pheochromocytomas (PCCs), renal cell carcinomas (RCCs). CHBs are the most common manifestations of VHL disease, occurring sporadically or as a manifestation of VHL disease. Inactivation of the VHL gene at 3p25-26 is believed to cause both familial and sporadic VHL-associated tumours and germ-line mutation of the VHL gene have been detected in 100% of the CHBs studied. However, a limited number of sporadic CHBs, PCCs display VHL inactivation. Other molecular alterations involved in tumourigenesis of sporadic CHBs, PCCs remain largely unknown. The purpose of the present work was to search for genetic alterations, or other mechanisms of inactivation, in addition to the VHL gene, that may be important in the development of VHL-associated tumours. Though less satisfactory than cure, prevention and early detection are the most promising and feasible means reducing cancer morbidity and mortality. This work is based on the view that increasing knowledge about the molecular events underlying tumour development will eventually aid in early detection and lead to improved treatment. We evaluated a large set of VHL-associated patients, searched for a clinical and radiologic signs of the disease. We succesfully performed a germ-line mutation analysis and characterised three patient groups, VHL, suspect VHL and sporadic, a germ-line mutation analysis revealed a 50% mutation rate only in the VHL groups, no sporadic or suspect cases displayed any mutation. We also utilized comparative genomic hybridization (CGH) to screen for DNA copy number changes in both sporadic and VHL-associated CHB. Our analysis revealed (27%) DNA copy number losses. The most common finding was loss of chromosomal arm 6q, seen in (23%) cases, No differences were noted between VHL-associated and sporadic tumours. Furthermore a loss of heterozygosity (LOH) study on chromosome 3p and 6q was done with the purpose to determine allele losses not observable by CGH, and to uncover the location of putative tumour suppressor genes important in CHB and PCC tumourigenesis. We identified loss of chromosome 6q and a minimal deleted area at 6q23-24 in CHBs. We also showed LOH at 6q23-24 in PCCs and identified the ZAC1 (6q24-25) as a candidate gene, ZAC1 is a maternally imprinted tumour suppressor gene with anti proliferative properties. To study further the role of ZAC inactivation in CHBs, we investigated LOH, promoter hypermethylation and expression status of the ZAC1 gene in mainly sporadic CHBs. Our LOH analysis revealed that the majority of the tumours with allele loss. The gene promoter methylation analysis similarly detected predominance of the methylated ZAC sequence in almost all tumours. Immunohistochemistry exhibited a strongly reduced expression of ZAC in stromal cells of all CHBs studied. Our current results indicate that the absence of the unmethylated, ZAC1 promoter sequence was highly concurrent with LOH for the ZAC1 region or 6q loss. This observation together with lack of ZAC expression, points to preferential loss of the non imprinted, expressed ZAC allele in CHB, in summary, our series of studies reveal a new chromosomal region 6q, emphasizes the importance of ZAC1 gene in the development of CHB and PCC, particularly in non-VHL associated cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional loss of tumor suppressor protein p53 is a common feature in diverse human cancers. The ability of this protein to sense cellular damage and halt the progression of the cell cycle or direct the cells to apoptosis is essential in preventing tumorigenesis. Tumors having wild-type p53 also respond better to current chemotherapies. The loss of p53 function may arise from TP53 mutations or dysregulation of factors controlling its levels and activity. Probably the most significant inhibitor of p53 function is Mdm2, a protein mediating its degradation and inactivation. Clearly, the maintenance of a strictly controlled p53-Mdm2 route is of great importance in preventing neoplastic transformation. Moreover, impairing Mdm2 function could be a nongenotoxic way to increase p53 levels and activity. Understanding the precise molecular mechanisms behind p53-Mdm2 relationship is thus essential from a therapeutic point of view. The aim of this thesis study was to discover factors affecting the negative regulation of p53 by Mdm2, causing activation of p53 in stressed cells. As a model of cellular damage, we used UVC radiation, inducing a complex cellular stress pathway. Exposure to UVC, as well as to several chemotherapeutic drugs, causes robust transcriptional stress in the cells and leads to activation of p53. By using this model of cellular stress, our goal was to understand how and by which proteins p53 is regulated. Furthermore, we wanted to address whether these pathways affecting p53 function could be altered in human cancers. In the study, two different p53 pathway proteins, nucleophosmin (NPM) and promyelocytic leukemia protein (PML), were found to participate in the p53 stress response following UV stress. Subcellular translocations of these proteins were discovered rapidly after exposure to UV. The alterations in the cellular localizations were connected to transient interactions with p53 and Mdm2, implicating their significance in the regulation of p53 stress response. NPM was shown to control Mdm2-p53 interface and mediate p53 stabilization by blocking the ability of Mdm2 to promote p53 degradation. Furthermore, NPM mediated p53 stabilization upon viral insult. We further detected a connection between cellular pathways of NPM and PML, as PML was found to associate with NPM in UV-radiated cells. The observed temporal UV-induced interactions strongly imply existence of a multiprotein complex participating in the p53 response. In addition, PML controlled the UV response of NPM, its localization and complex formation with chromatin associated factors. The relevance of the UV-promoted interactions was demonstrated in studies in a human leukemia cell line, being under abnormal transcriptional repression due to expression of oncogenic PML-RARa fusion protein. Reversing the leukemic phenotype with a therapeutically significant drug was associated with similar complex formation between p53 and its partners as following UV. In conclusion, this thesis study identifies novel p53 pathway interactions associated with the recovery from UV-promoted as well as oncogenic transcriptional repression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurodegenerative disorders are chronic, progressive, and often fatal disorders of the nervous system caused by dysfunction, and ultimately, death of neuronal cells. The underlying mechanisms of neurodegeneration are poorly understood, and monogenic disorders can be utilised as disease models to elucidate the pathogenesis. Juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease) is a recessively inherited lysosomal storage disorder with progressive neurodegeneration and accumulation of autofluorescent storage material in most tissues. It is caused by mutations in the CLN3 gene; however, the exact function of the corresponding CLN3 protein, as well as the molecular mechanisms of JNCL pathogenesis have remained elusive. JNCL disease exclusively affects the central nervous system leaving other organs unaffected, and therefore it is of a particular importance to conduct studies in brain tissue and neuronal cells. The aim of this thesis project was to elucidate the molecular and cell biological mechanisms underlying JNCL. This was the first study to describe the endogenous Cln3 protein, and it was shown that Cln3 localised to neuronal cells in the mouse brain. At a subcellular level, endogenous Cln3 was localised to the presynaptic terminals and to the synaptosome compartment, but not to the synaptic vesicles. Studies with the CLN3-deficient cells demonstrated an impaired endocytic membrane trafficking, and established an interconnection between CLN3, microtubulus-binding Hook1 and Rab proteins. This novel data was not only important in characterising the roles of CLN3 in cells, but also provided significant information delineating the versatile role of the Rab proteins. To identify affected cellular pathways in JNCL, global gene expression profiling of the knock-out mouse Cln3-/- neurons was performed and systematically analysed; this revealed a slight dysfunction of the mitochondria, cytoskeletal abnormality in the microtubule plus-end, and an impaired recovery from depolarizing stimulus when specific N-type Ca2+ channels were inhibited, thus leading to a prolonged time of higher intracellular calcium. All these defective pathways are interrelated, and may together be sufficient to initiate the neurodegenerative process. Results of this thesis also suggest that in neuronal cells, CLN3 most likely functions at endocytic vesicles at the presynaptic terminal, potentially involved in the regulation of the calcium-mediated synaptic transmission.