956 resultados para Engineering, Mechanical|Energy
Resumo:
This thesis concentrates on developing a practical local approach methodology based on micro mechanical models for the analysis of ductile fracture of welded joints. Two major problems involved in the local approach, namely the dilational constitutive relation reflecting the softening behaviour of material, and the failure criterion associated with the constitutive equation, have been studied in detail. Firstly, considerable efforts were made on the numerical integration and computer implementation for the non trivial dilational Gurson Tvergaard model. Considering the weaknesses of the widely used Euler forward integration algorithms, a family of generalized mid point algorithms is proposed for the Gurson Tvergaard model. Correspondingly, based on the decomposition of stresses into hydrostatic and deviatoric parts, an explicit seven parameter expression for the consistent tangent moduli of the algorithms is presented. This explicit formula avoids any matrix inversion during numerical iteration and thus greatly facilitates the computer implementation of the algorithms and increase the efficiency of the code. The accuracy of the proposed algorithms and other conventional algorithms has been assessed in a systematic manner in order to highlight the best algorithm for this study. The accurate and efficient performance of present finite element implementation of the proposed algorithms has been demonstrated by various numerical examples. It has been found that the true mid point algorithm (a = 0.5) is the most accurate one when the deviatoric strain increment is radial to the yield surface and it is very important to use the consistent tangent moduli in the Newton iteration procedure. Secondly, an assessment of the consistency of current local failure criteria for ductile fracture, the critical void growth criterion, the constant critical void volume fraction criterion and Thomason's plastic limit load failure criterion, has been made. Significant differences in the predictions of ductility by the three criteria were found. By assuming the void grows spherically and using the void volume fraction from the Gurson Tvergaard model to calculate the current void matrix geometry, Thomason's failure criterion has been modified and a new failure criterion for the Gurson Tvergaard model is presented. Comparison with Koplik and Needleman's finite element results shows that the new failure criterion is fairly accurate indeed. A novel feature of the new failure criterion is that a mechanism for void coalescence is incorporated into the constitutive model. Hence the material failure is a natural result of the development of macroscopic plastic flow and the microscopic internal necking mechanism. By the new failure criterion, the critical void volume fraction is not a material constant and the initial void volume fraction and/or void nucleation parameters essentially control the material failure. This feature is very desirable and makes the numerical calibration of void nucleation parameters(s) possible and physically sound. Thirdly, a local approach methodology based on the above two major contributions has been built up in ABAQUS via the user material subroutine UMAT and applied to welded T joints. By using the void nucleation parameters calibrated from simple smooth and notched specimens, it was found that the fracture behaviour of the welded T joints can be well predicted using present methodology. This application has shown how the damage parameters of both base material and heat affected zone (HAZ) material can be obtained in a step by step manner and how useful and capable the local approach methodology is in the analysis of fracture behaviour and crack development as well as structural integrity assessment of practical problems where non homogeneous materials are involved. Finally, a procedure for the possible engineering application of the present methodology is suggested and discussed.
Resumo:
This paper presents a methodology to determine the parameters used in the simulation of delamination in composite materials using decohesion finite elements. A closed-form expression is developed to define the stiffness of the cohesive layer. A novel procedure that allows the use of coarser meshes of decohesion elements in large-scale computations is proposed. The procedure ensures that the energy dissipated by the fracture process is correctly computed. It is shown that coarse-meshed models defined using the approach proposed here yield the same results as the models with finer meshes normally used in the simulation of fracture processes
Resumo:
The purpose of this study was to investigate the nature of co-operation between a project owner and an outside engineering consultant in combined heat and power plant implementation projects. Moreover, as another focal subject of the study was to familiarize the purchasing behavior of the energy producer and how an outside engineering consultant participated into different stages of the purchasing process. The study was carried out as a multiple case study including altogether six Finnish power plant implementation projects that had been taken into commercial use during 1995 – 2015. By adjusting the findings of empirical interview data and comparing those to the theoretical framework concerning, among others, Finnish energy production, engineering consulting businesses, delivery methods of construction project and finally the purchasing process, it can be concluded that especially in the power plant implementation projects in the past have a great influence to decisions made during the project. The role of the main engineering consultant is to act as an assistant, who helps to achieve the project goals successfully rather than an advisor who only knows how the project should be conducted. At least in these five project cases this was the case, meaning that the final decision power always remaining with project owner.
Resumo:
Kuumahiertoprosessi on erittäin energiaintensiivinen prosessi, jonka energianominaiskulutus (EOK) on yleisesti 2–3.5 MWh/bdt. Noin 93 % energiasta kuluu jauhatuksessa jakautuen niin, että kaksi kolmasosaa kuluu päälinjan ja yksi kolmasosa rejektijauhatuksessa. Siksi myös tämän työn tavoite asetettiin vähentämään energian kulutusta juuri pää- ja rejektijauhatuksessa. Päälinjan jauhatuksessa tutkimuskohteiksi valittiin terityksen, tehojaon ja tuotantotason vaikutus EOK:een. Rejektijauhatuksen tehostamiseen pyrittiin yrittämällä vähentää rejektivirtaamaa painelajittelun keinoin. Koska TMP3 laitoksen jauhatuskapasiteettia on nostettu 25 %, tavoite oli nostaa päälinjan lajittelun kapasiteettia saman verran. Toisena tavoitteena oli pienentää rejektisuhdetta pää- ja rejektilajittelussa ja siten vähentää energiankulutusta rejektijauhatuksessa. Näitä tavoitteita lähestyttiin vaihtamalla päälinjan lajittimiin TamScreen-roottorit ja rejektilajittimiin Metso ProFoil-roottorit ja optimoimalla kuitufraktiot sihtirumpu- ja prosessiparametrimuutoksin. Syöttävällä terätyypillä pystyttiin vähentämään EOK:ta 100 kWh/bdt, mutta korkeampi jauhatusintensiteetti johti myös alempiin lujuusominaisuuksiin, korkeampaan ilmanläpäisyyn ja korkeampaan opasiteettiin. Myös tehojaolla voitiin vaikuttaa EOK:een. Kun ensimmäisen vaiheen jauhinta kuormitettiin enemmän, saavutettiin korkeimmillaan 70 kWh/bdt EOK-vähennys. Tuotantotason mittaamisongelmat heikensivät tuotantotasokoeajojen tuloksia siinä määrin, että näiden tulosten perusteella ei voida päätellä, onko EOK tuotantotasoriippuvainen vai ei. Päälinjan lajittelun kapasiteettia pystyttiin nostamaan TS-roottorilla vain 18 % jääden hieman tavoitetasosta. Rejektilajittelussa pystyttiin vähentämään rejektimäärää huomattavasti Metso ProFoil-roottorilla sekä sihtirumpu- ja prosessiparametrimuutoksin. Lajittamokehityksellä saavutettu EOK-vähennys arvioitiin massarejektisuhteen pienentymisen ja rejektijauhatuksessa käytetyn EOK:n avulla olevan noin 130 kWh/bdt. Yhteenvetona voidaan todeta, että tavoite 300 kWh/bdt EOK-vähennyksestä voidaan saavuttaa työssä käytetyillä tavoilla, mikäli niiden täysi potentiaali hyödynnetään tuotannossa.
Resumo:
In castor oil extraction process, the bean coat is abrasive to the equipment and releases substances that modify the oil color, reducing its quality. A potential solution would be to run the extraction by compressing only the endosperm. Due to lack of information, the objective of this study was to evaluate the influence of forced air drying at 40, 60, 80 and 100 ºC and farmyard drying, in the mechanical properties of the beans, aiming to break the bean coat. Castor beans were subjected to compression tests, in two perpendicular directions, at a strain rate of 0.6 mm.s-1. Average values of force, deformation energy, strain, all at rupture, and stiffness were used to evaluate the effects of dehydration. It was observed that the heat treatments did not alter the mechanical properties of castor beans, the strain and stiffness values discriminate the differences between the directions and had the lowest coefficients of variation. It was concluded that forced air drying, more costly than farmyard drying, does not bring benefits to the decortication. However, regardless the heat treatment used, the mechanical stress lengthwise is the most suitable to promote decortication.
Resumo:
Waste incineration plants are increasingly established in China. A low heating value and high moisture content, due to a large proportion of biowaste in the municipal solid waste (MSW), can be regarded as typical characteristics of Chinese MSW. Two incineration technologies have been mainly established in China: stoker grate and circular fluidized bed (CFB). Both of them are designed to incinerate mixed MSW. However, there have been difficulties to reach the sufficient temperature in the combustion process due to the low heating value of the MSW. That is contributed to the usage of an auxiliary fossil fuel, which is often used during the whole incineration process. The objective of this study was to design alternative Waste-to-energy (WTE) scenarios for existing WTE plants with the aim to improve the material and energy efficiency as well as the feasibility of the plants. Moreover, the aim of this thesis was to find the key factors that affect to the feasibility of the scenarios. Five different WTE plants were selected as study targets. The necessary data for calculation was gained from literature as well as received from the operators of the target WTE plants. The created scenarios were based on mechanical-biological treatment (MBT) technologies, in which the produced solid recovered fuel (SRF) was fed as an auxiliary fuel into a WTE plant replacing the fossil fuel. The mechanically separated biowaste was treated either in an anaerobic digestion (AD) plant, a biodrying plant, a thermal drying plant, or a combined AD plant + thermal drying plant. An interactive excel spreadsheet based computation tool was designed to estimate the viability of the scenarios in different WTE cases. The key figures of the improved material and energy efficiency, such as additional electricity generated and avoided waste for landfill, were got as results. Furthermore, economic indicators such as annual profits (or costs), payback period, and internal rate of return (IRR) were gained as results. The results show that the AD scenario was the most profitable in most of the cases. The current heating value of MSW and the tipping fee for the received MSW appeared as the most important factor in terms of feasibility.
Resumo:
Biorefining is defined as sustainable conversion of biomass into marketable products and energy. Forests cover almost one third of earth’s land area, and account for approximately 40% of the total annual biomass production. In forest biorefining, the wood components are, in addition to the traditional paper and board products, converted into chemicals and biofuels. The major components in wood are cellulose, hemicelluloses, and lignin. The main hemicellulose in softwoods, which are of interest especially for the Nordic forest industry, is O-acetyl galactoglucomannan (GGM). GGM can be isolated in industrial scale from the waste waters of the mechanical pulping process, but is not yet today industrially utilized. In order to attain desired properties of GGM for specific end-uses, chemical and enzymatic modifications can be performed. Regioselective modifications of GGM, and other galactose-containing polysaccharides were done by oxidations, and by combining oxidations with subsequent derivatizations of the formed carbonyl or carboxyl groups. Two different pathways were investigated: activation of the C-6 positions in different sugar units by TEMPO-mediated oxidation, and activation of C-6 position in only galactose-units by oxidation catalyzed by the enzyme galactose oxidase. The activated sites were further selectively derivatized; TEMPO-oxidized GGM by a carbodiimide-mediated reaction forming amides, and GO-oxidized GGM by indium-mediated allylation introducing double or triple bonds to the molecule. In order to better understand the reaction, and to develop a MALDI-TOF-MS method for characterization of regioselectively allylated GGM, α-D-galactopyranoside and raffinose were used as model compounds. All reactions were done in aqueous media. To investigate the applicability of the modified polysaccharides for, e.g., cellulose surface functionalization, their sorption onto pulp fibres was studied. Carboxylation affects the sorption tendency significantly; a higher degree of oxidation leads to lower sorption. By controlling the degree of oxidation of the polysaccharides and the ionic strength of the sorption media, high degrees of sorption of carboxylated polysaccharides onto cellulose could, however, be obtained. Anionic polysaccharides were used as templates during laccase-catalyzed polymerization of aniline, offering a green, chemo-enzymatic route for synthesis of conducting polyaniline (PANI) composite materials. Different polysaccharide templates, such as, native GGM, TEMPO-oxidized GGM, naturally anionic κ-carrageenan, and nanofibrillated cellulose produced by TEMPO-oxidation, were assessed. The conductivity of the synthesized polysaccharide/PANI biocomposites varies depending on the polysaccharide template; κ-CGN, the anionic polysaccharide with the lowest pKa value, produces the polysaccharide/PANI biocomposites with the highest conductivity. The presented derivatization, sorption, and polymerization procedures open new application windows for polysaccharides, such as spruce GGM. The modified polysaccharides and the conducting biocomposites produced provide potential applications in biosensors, electronic devices, and tissue engineering.
Resumo:
Hemolytic profile of an artificial device chronically implanted in the cardiovascular system may represent the difference between the success and failure in its long-term performance. Last decades have witnessed efforts on the development of methods capable of predicting red blood cell damage in artificial organs. However, all of them have had limited success to predict hemolysis. The primary cause of this problem is that such models do not take into consideration structures of turbulent flow. The present paper demonstrates that microscopic measurable occurrences of the turbulent flow may be linked to red blood cell trauma. This study suggests that if the smallest turbulent eddies dimension is under 10 m m hemolysis is not dependent on the exposure time and the red blood cells damage depends only on the dissipation of the turbulent energy in the erythrocyte membrane. The analysis reported here opens the possibility of mapping the flow field in artificial assist devices based on the smallest eddy length scales. This is a promising new trend and should be considered in the designing requirements of the next generations of artificial organs.
Resumo:
This paper presents a new strategy to control an one-legged robot aiming to reduce the energy expended by the system. To validate this algorithm, a classic method as benchmark was used. This method has been extensively validated by simulations and experimental prototypes in the literature. For simplicity reasons, the work is restricted to the two dimensional case due to simplicity reasons. This new method is compared to the classic one with respect to performance and energy expended by the system. The model consists on a springy leg, a simple body, and an actuated hinge-type hip. The new control strategy is composed of three parts, considering the hopping height, the forward speed, and the body orientation separately. The method exploits the system passive dynamics, defined as non-forced response of the system. In this case, the model is modified adding a spring to the hip. The method defines a desired leg trajectory close to the passive hip swing movement. Simulation results for both methods are analyzed and compared.
Resumo:
A high final brightness is desired in most paper and board products. This requires bleaching processes that are able to produce high-brightness pulps. Mechanical pulps are widely bleached for high brightness using alkaline hydrogen peroxide with traditional sodium hydroxide and sodium silicate as additives. With high doses however, peroxide bleaching causes high organic loads in the mill effluent and anionic trash carry-over to papermaking. To alleviate the problems that arise from the use of sodium-based additives in peroxide bleaching, interest in the use of alternative magnesium-based chemicals has increased. In this study, a new, technical high-purity magnesium hydroxide-based bleaching additive was evaluated on laboratory-scale, pilot-scale and mill-scale experiments and trials for its ability to produce a high brightness in peroxide bleaching without the known problems of sodium-based chemicals. The key findings of this study include: a high brightening potential of peroxide bleaching using the Mg(OH)2-based additive, significant reductions (40-70%) in all categories of environmental load, and cationic demand lowered by 60-70% in bleached pulp with no loss in strength properties or in sheet bulk. When used in TMP refiner bleaching, the Mg(OH)2-based additive resulted in savings in specific energy consumption and provided a good bleaching response.
Resumo:
Distillation is a unit operation of process industry, which is used to separate a liquid mixture into two or more products and to concentrate liquid mixtures. A drawback of the distillation is its high energy consumption. An increase in energy and raw material prices has led to seeking ways to improve the energy efficiency of distillation. In this Master's Thesis, these ways are studied in connection with the concentration of hydrogen peroxide at the Solvay Voikkaa Plant. The aim of this thesis is to improve the energy efficiency of the concentration of the Voikkaa Plant. The work includes a review of hydrogen peroxide and its manufacturing. In addition, the fundamentals of distillation and its energy efficiency are reviewed. An energy analysis of the concentration unit of Solvay Voikkaa Plant is presented in the process development study part. It consists of the current and past information of energy and utility consumptions, balances, and costs. After that, the potential ways to improve the energy efficiency of the distillation unit at the factory are considered and their feasibility is evaluated technically and economically. Finally, proposals to improve the energy efficiency are suggested. Advanced process control, heat integration and energy efficient equipment are the most potential ways to carry out the energy efficient improvements of the concentration at the Solvay Voikkaa factory. Optimization of the reflux flow and the temperatures of the overhead condensers can offer immediate savings in the energy and utility costs without investments. Replacing the steam ejector system with a vacuum pump would result in savings of tens of thousands of euros per year. The heat pump solutions, such as utilizing a mechanical vapor recompression or thermal vapor recompression, are not feasible due to the high investment costs and long pay back times.