995 resultados para ENERGY GAP
Resumo:
The origin of the microscopic inhomogeneities in InxGa12xAs layers grown on GaAs by molecular beam epitaxy is analyzed through the optical absorption spectra near the band gap. It is seen that, for relaxed thick layers of about 2.8 mm, composition inhomogeneities are responsible for the band edge smoothing into the whole compositional range (0.05,x,0.8). On the other hand, in thin enough layers strain inhomogeneities are dominant. This evolution in line with layer thickness is due to the atomic diffusion at the surface during growth, induced by the strain inhomogeneities that arise from stress relaxation. In consequence, the strain variations present in the layer are converted into composition variations during growth. This process is energetically favorable as it diminishes elastic energy. An additional support to this hypothesis is given by a clear proportionality between the magnitude of the composition variations and the mean strain.
Resumo:
The correlation between the structural (average size and density) and optoelectronic properties [band gap and photoluminescence (PL)] of Si nanocrystals embedded in SiO2 is among the essential factors in understanding their emission mechanism. This correlation has been difficult to establish in the past due to the lack of reliable methods for measuring the size distribution of nanocrystals from electron microscopy, mainly because of the insufficient contrast between Si and SiO2. With this aim, we have recently developed a successful method for imaging Si nanocrystals in SiO2 matrices. This is done by using high-resolution electron microscopy in conjunction with conventional electron microscopy in dark field conditions. Then, by varying the time of annealing in a large time scale we have been able to track the nucleation, pure growth, and ripening stages of the nanocrystal population. The nucleation and pure growth stages are almost completed after a few minutes of annealing time at 1100°C in N2 and afterward the ensemble undergoes an asymptotic ripening process. In contrast, the PL intensity steadily increases and reaches saturation after 3-4 h of annealing at 1100°C. Forming gas postannealing considerably enhances the PL intensity but only for samples annealed previously in less time than that needed for PL saturation. The effects of forming gas are reversible and do not modify the spectral shape of the PL emission. The PL intensity shows at all times an inverse correlation with the amount of Pb paramagnetic centers at the Si-SiO2 nanocrystal-matrix interfaces, which have been measured by electron spin resonance. Consequently, the Pb centers or other centers associated with them are interfacial nonradiative channels for recombination and the emission yield largely depends on the interface passivation. We have correlated as well the average size of the nanocrystals with their optical band gap and PL emission energy. The band gap and emission energy shift to the blue as the nanocrystal size shrinks, in agreement with models based on quantum confinement. As a main result, we have found that the Stokes shift is independent of the average size of nanocrystals and has a constant value of 0.26±0.03 eV, which is almost twice the energy of the Si¿O vibration. This finding suggests that among the possible channels for radiative recombination, the dominant one for Si nanocrystals embedded in SiO2 is a fundamental transition spatially located at the Si¿SiO2 interface with the assistance of a local Si-O vibration.
Resumo:
Selostus: Rehun valkuais- ja energiapitoisuuden vaikutus sikojen typen hyväksikäyttöön, veden kulutukseen ja virtsan eritykseen
Resumo:
Sleep-wake cycle is characterized by changes in neuronal network activity. However, for the last decade there is increasing evidence that neuroglial interaction may play a role in the modulation of sleep homeostasis and that astrocytes have a critical impact in this process. Interestingly, astrocytes are organized into communicating networks based on their high expression of connexins, which are the molecular constituents of gap junction channels. Thus, neuroglial interactions should also be considered as the result of the interplay between neuronal and astroglial networks. Here, we investigate the effect of modafinil, a wakefulness-promoting agent, on astrocyte gap junctional communication. We report that in the cortex modafinil injection increases the expression of mRNA and protein of connexin 30 but not those of connexin 43, the other major astroglial connexin. These increases are correlated with an enhancement of intercellular dye coupling in cortical astrocytes, which is abolished when neuronal activity is silenced by tetrodotoxin. Moreover, gamma-hydroxybutyric acid, which at a millimolar concentration induces sleep, has an opposite effect on astroglial gap junctions in an activity-independent manner. These results support the proposition that astroglia may play an important role in complex physiological brain functions, such as sleep regulation, and that neuroglial networking interaction is modified during sleep-wake cycle. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Resumo:
Evidence is accumulating that total body mass and its relative composition influence the rate of fat utilization in man. This effect can be explained by two factors operating in concert: (i) the effect of the size of the tissue mass and (ii) the nature of the fuel mix oxidized, i.e. the proportion of energy derived from fat vs. carbohydrate. In a cross-sectional study of 307 women with increasing degrees of obesity, we observed that the respiratory quotient (RQ) in post-absorptive conditions became progressively lower with increased body fatness, indicating a shift in substrate utilization. However, the RQ is known to be also influenced by the diet commonly ingested by the subjects. A short-term mixed diet overfeeding in lean and obese women has also demonstrated the high sensitivity of RQ to changes in energy balance. Following a one-day overfeeding (2500 kcal/day in excess of the previous 24 h energy expenditure), the magnitude of increase in RQ was identical in lean and obese subjects and the net efficiency of substrate utilization and storage was not influenced by the state of obesity.
Resumo:
In many practical applications the state of field soils is monitored by recording the evolution of temperature and soil moisture at discrete depths. We theoretically investigate the systematic errors that arise when mass and energy balances are computed directly from these measurements. We show that, even with no measurement or model errors, large residuals might result when finite difference approximations are used to compute fluxes and storage term. To calculate the limits set by the use of spatially discrete measurements on the accuracy of balance closure, we derive an analytical solution to estimate the residual on the basis of the two key parameters: the penetration depth and the distance between the measurements. When the thickness of the control layer for which the balance is computed is comparable to the penetration depth of the forcing (which depends on the thermal diffusivity and on the forcing period) large residuals arise. The residual is also very sensitive to the distance between the measurements, which requires accurately controlling the position of the sensors in field experiments. We also demonstrate that, for the same experimental setup, mass residuals are sensitively larger than the energy residuals due to the nonlinearity of the moisture transport equation. Our analysis suggests that a careful assessment of the systematic mass error introduced by the use of spatially discrete data is required before using fluxes and residuals computed directly from field measurements.
Resumo:
The rate of energy expenditure was repeatedly measured by indirect calorimetry both in the basal state (BMR) and in the resting fed state (RMR) in 8 middle-aged male patients operated for oropharyngeal cancer. In the postsurgical phase, two sequential energy levels were administered by nasogastric tube: (1) a 'maintenance' level (days 3-5) at 1.4 X measured presurgery BMR; (2) a 'supramaintenance' level (days 6-9) at 1.7 X measured BMR on day 6. Before surgery the patients had a BMR averaging (23.7 +/- 1.0 kcal/kg.day). After surgery BMR increased to 27.6 +/- 2.7 kcal/kg.day (day 6), then it decreased to 24.4 +/- 1.4 kcal/kg.day (day 10). The difference between RMR and BMR yielded a nutrient-induced thermogenesis averaging 5 +/- 1 and 8.5 +/- 2% (p less than 0.05) on levels 1 and 2, respectively. It is concluded that an energy level corresponding to 1.4 X presurgery BMR is sufficient to maintain energy and substrate equilibrium in nondepleted patients, whereas 1.7 X BMR induces positive protein and fat balances concomitant to a decrease efficiency of energy utilization.
Resumo:
Resting energy expenditure is frequently increased in chronic obstructive pulmonary disease (COPD), but it is unknown if this hypermetabolism holds true over 24 h. The aim of this study was to measure the actual 24-h energy expenditure (24-h EE) in patients with stable COPD. Energy expenditure was measured by indirect calorimetry, using a metabolic chamber for 24-h EE and a canopy for basal metabolic rate (BMR). Physical activity was detected in the chamber by a radar system, and its duration was quantified. Two groups matched for age and height were studied: 16 male ambulatory patients with stable COPD and 12 male normal subjects. Body weight was 92 +/- 12% of ideal body weight in the group with COPD and 108 +/- 11% in the control group (p = 0.01). BMR was 120 +/- 7% of predicted in the group with COPD and 108 +/- 12% in the control group (p < 0.01). However, 24-h EE was similar in the two groups, amounting to 1,935 +/- 259 kcal in patients with COPD and 2,046 +/- 253 kcal in the control group (NS). This corresponded to 145% and 137% of predicted BMR, and to 121% and 126% of measured BMR in patients with COPD and the control group, respectively (NS). Patients were allowed to pursue their usual treatment within the chamber, and a positive correlation existed between 24-h EE and the daily dose of inhaled beta 2-agonists (p < 0.03). During daytime, physical activity was lower in patients with COPD. This study shows that patients with stable COPD are characterized by a normal daily energy expenditure in controlled conditions in spite of an increased basal metabolic rate. They appear to save energy by reducing their spontaneous level of physical activity.
Resumo:
Report on the Iowa Office of Energy Independence for the year ended June 30, 2010
Resumo:
We study the spectrum and magnetic properties of double quantum dots in the lowest Landau level for different values of the hopping and Zeeman parameters by means of exact diagonalization techniques in systems of N=6 and 7 electrons and a filling factor close to 2. We compare our results with those obtained in double quantum layers and single quantum dots. The Kohn theorem is also discussed.
Resumo:
The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic models quantal and semiclassical calculations of the curvature energy are in good agreement.
Resumo:
Semiclassical theories such as the Thomas-Fermi and Wigner-Kirkwood methods give a good description of the smooth average part of the total energy of a Fermi gas in some external potential when the chemical potential is varied. However, in systems with a fixed number of particles N, these methods overbind the actual average of the quantum energy as N is varied. We describe a theory that accounts for this effect. Numerical illustrations are discussed for fermions trapped in a harmonic oscillator potential and in a hard-wall cavity, and for self-consistent calculations of atomic nuclei. In the latter case, the influence of deformations on the average behavior of the energy is also considered.