997 resultados para Coupling parameters
Resumo:
Transmission of electromagnetic wave in a heavily doped n-type GaAs film is studied theoretically. From the calculations, an extraordinary transmission of p-polarized waves through the film with subwavelength grooves on both surfaces at mid-infrared frequencies is found. This extraordinary transmission is attributed to the coupling of the surface-plasmon polariton modes and waveguide modes. By selecting a set of groove parameters, the transmission is optimized to a maximum. Furthermore, the transmission can be tuned by dopant concentrations. As the dopant concentration increases, the peak position shifts to higher frequency but the peak value decreases.
Resumo:
A computer program, QtUCP, has been developed based on several well-established algorithms using GCC 4.0 and Qt (R) 4.0 (Open Source Edition) under Debian GNU/Linux 4.0r0. it can determine the unit-cell parameters from an electron diffraction tilt series obtained from both double-tilt and rotation-tilt holders. In this approach, two or more primitive cells of the reciprocal lattice are determined from experimental data, in the meantime, the measurement errors of the tilt angles are checked and minimized. Subsequently, the derived primitive cells are converted into the reduced form and then transformed into the reduced direct primitive cell. Finally all the patterns are indexed and the least-squares refinement is employed to obtain the optimized results of the lattice parameters. Finally, two examples are given to show the application of the program, one is based on the experiment, the other is from the simulation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The effects of the surface morphology of Ag on the surface-plasmon-enhanced emission of ZnO films have been studied for a ZnO/Ag/Si system by photoluminescence spectroscopy and atomic force microscopy. The results indicate that the enhancement of ZnO ultraviolet emission is dependent on the deposition conditions of the Ag interlayers. By examining the dependence of the enhancement ratio of surface-plasmon-mediated emission on the characteristic parameters of Ag surface morphology, we found that the surface plasmon coupling to light is determined by both the Ag particle size and density.
Resumo:
The characteristics of whispering-gallery modes (WGMs) in 3-D cylindrical, square, and triangular microcavities with vertical optical confinement of semiconductors are numerically investigated by the finite-difference time-domain (FDTD) technique. For a microcylinder with a vertical refractive index 3.17/3.4/3.17 and a center layer thickness 0.2 mu m, Q-factors of transverse electric (TE) WGMs around wavelength 1550 nm are smaller than 10(3), as the radius R < 4 mu m and reach the orders of 10(4) and 10(6) as R = 5 and 6 mu m, respectively. However, the Q-factor of transverse magnetic (TM) WGMs at wavelength 1.659 mu m reaches 7.5 x 10(5) as R = 1 mu m. The mode coupling between the WGMs and vertical radiation modes in the cladding layer results in vertical radiation loss for the WGMs. In the microcylinder, the mode wavelength of TM WGM is larger than the cutoff wavelength of the vertical radiation mode with the same mode numbers, so TM WGMs cannot couple with the vertical radiation mode and have high Q-factor. In contrast, TE WGMs can couple with the corresponding vertical radiation mode in the 3-D microcylinder as R < 5 mu m. However, the mode wavelength of the TE WGM approaches (is larger than) the cutoff wavelength of the corresponding radiation modes at R = 5 mu m (6 mu m), so TE WGMs have high Q-factors in such microcylinders too. The results show that a critical lateral size is required for obtaining high, Q-factor TE WGMs in the 3-D microcylinder. For 3-D square and triangular microcavities, we also find that the Q-factor of TM WGM is larger than that of TE WGM.
Resumo:
The variational method is proposed to analyze the influence of the fabrication parameters on the performance of buried K+-Na+ ion-exchanged Er3+-Yb3+ ions co-doped glass waveguide. The unknown parameters of the Hermite-Gaussian functions as the trial field distribution are determined based on the scalar variational principle. It is demonstrated that the results calculated in this paper agree with those measured in the experiment. The mode dimensions, the effective refractive index, and the overlap factor as the functions of the fabrication parameters are investigated. These results of the variational analysis are useful for the design and optimization of Er3+-Yb3+ ions co-doped waveguides.
Resumo:
Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping. A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling, and calculated cooling efficiencies of different coupling mechanisms and of different lens materials. A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended.
Resumo:
Based on the density functional theory, we study the magnetic coupling properties of Mn-doped ZnO nanowires. For the nanowires with passivated surfaces, the antiferromagnetic state is found and the Mn atoms have a clustering tendency. When the distance between two Mn atoms is large, the system energetically favors the paramagnetic or spin-glass state. For the nanowires with unpassivated surfaces, the ferromagnetic (FM) coupling states appear between the two nearest Mn atoms, and the zinc vacancies can further stabilize the FM states between them. The electrons with enough concentration possibly mediate the FM coupling due to the negative exchange splitting of conduction band minimum induced by the s-d coupling, which could be useful in nanomaterial design for spintronics. (C) 2008 American Institute of Physics.
Resumo:
Thermal effects will make chip temperature change with bias current of semiconductor lasers, which results in inaccurate intrinsic response by the conventional subtraction method. In this article, an extended subtraction method of scattering parameters for characterizing adiabatic responses of laser diode is proposed. The pulsed injection operation is used to determine the chip temperature of packaged semiconductor laser, and an optimal injection condition is obtained by investigating the dependence of the lasing wavelength on the width and period of the injection pulse in a relatively wide temperature range. In this case, the scattering parameters of laser diode are measured on adiabatic condition and the adiabatic intrinsic responses of packaged laser diode are first extracted. It is found that the adiabatic intrinsic responses are evidently superior to those without thermal consideration. The analysis results indicate that inclusion of thermal. effects is necessary to acquire accurate intrinsic responses of semiconductor lasers. (C) 2008 Wiley Periodicals, Inc.
Resumo:
Finite difference time domain (FDTD) method is used for the simulation and analysis of electromagnetic field in the top coupling layer of GaAs/AlGaAs quantum well infrared photodetector (QWIP). Simulation results demonstrated the coupling efficiencies and distributions of electromagnetic (EM) field in a variety of 2D photonic crystal coupling layer structures. A photonic crystal structure for bi-color-QWIP is demonstrated with high coupling efficiency for two wavelengths.
Resumo:
Transmission of an electromagnetic wave from a heavily doped n-type GaAs film is studied theoretically. The calculations are performed using the two-dimensional finite-different time-domain method. From the calculations, we find the extraordinary transmission of p-polarized waves through the film with subwavelength grooves on both surfaces at mid-infrared frequencies. By determining a set of groove parameters, we optimize the transmission to as high as 55.2%. We ascribe this extraordinary transmission to the coupling of the surface-plasmon polariton modes and waveguide modes. Such an enhanced transmission device can be useful for mid-infrared wave filters, emitters, and monitors.
Resumo:
The center-of-mass motion of quasi-two-dimensional excitons with spin-orbit coupling is calculated within the framework of effective mass theory. The results indicate that the spin-orbit coupling will induce a controllable bright-to-dark transition in a quasi-two-dimensional exciton system. This procedure can work as a way to increase the lifetime of excitons. (c) 2008 American Institute of Physics.
Resumo:
A novel method for characterizing the parasitics of parasitic network is proposed based on the relations between the scattering parameters of a semiconductor laser chip and laser diode. Experiments are designed and performed using our method. The analysis results are in good agreement with the measurements. Furthermore, how the parasitics change with the parasitic element values are investigated. The method only needs reflection coefficient of laser diode to be measured, which is simple because of the developed electrical-domain measurement techniques. 2007 Wiley Periodicals, Inc.
Resumo:
Based on appropriate combination of different band-gap InGaAsP, a new edge-coupled two-terminal double heterojunction phototransistor (ECTT-DHPT) was designed and fabricated, which is double heterojunction, free-aluminium, and works under uni-travelling-carrier mode and optically gradual coupling mode. This device is fully compatible with monolithic micro-wave integrated circuits (MMIC) and heterojunction bipolar transistor (HBT) in material and process. The DC characteristics reveal that the new ECTT-DHPT can perform good optoelectronic mix operation and linear amplification operation by optically biased at two appropriate value respectively. Responsivity of more than 52 A/W and dark current of 70 nA (when V-EC = 1 V) were obtained.
Resumo:
The electronic structure and magnetic coupling properties of rare-earth metals (Gd, Nd) doped ZnO have been investigated using first-principles methods. We show that the magnetic coupling between Gd or Nd ions in the nearest neighbor sites is ferromagnetic. The stability of the ferromagnetic coupling between Gd ions can be enhanced by appropriate electron doping into ZnO Gd system and the room-temperature ferromagnetism can be achieved. However, for ZnO Nd system, the ferromagnetism between Nd ions can be enhanced by appropriate holes doping into the sample. The room-temperature ferromagnetism can also be achieved in the n-conducting ZnO Nd sample. Our calculated results are in good agreement with the conclusions of the recent experiments. The effect of native defects (V-Zn, V-O) on the ferromagnetism is also discussed. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3176490]
Resumo:
We study the spin-Hall effect in a generalized honeycomb lattice, which is described by a tight-binding Hamiltonian including the Rashba spin-orbit coupling and inversion-symmetry breaking terms brought about by a uniaxial pressure. The calculated spin-Hall conductance displays a series of exact or approximate plateaus for isotropic or anisotropic hopping integral parameters, respectively. We show that these plateaus are a consequence of the various Fermi-surface topologies when tuning epsilon(F). For the isotropic case, a consistent two-band analysis, as well as a Berry-phase interpretation. are also given. (C) 2009 Elsevier B.V. All rights reserved.