995 resultados para Continuous Optimization
Resumo:
This study was undertaken to isolate ligninase-producing white-rot fungi for use in the extraction of fibre from pineapple leaf agriwaste. Fifteen fungal strains were isolated from dead tree trunks and leaf litter. Ligninolytic enzymes (lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac)), were produced by solid-state fermentation (SSF) using pineapple leaves as the substrate. Of the isolated strains, the one showing maximum production of ligninolytic enzymes was identified to be Ganoderma lucidum by 18S ribotyping. Single parameter optimization and response surface methodology of different process variables were carried out for enzyme production. Incubation period, agitation, and Tween-80 were identified to be the most significant variables through Plackett-Burman design. These variables were further optimized by Box-Behnken design. The overall maximum yield of ligninolytic enzymes was achieved by experimental analysis under these optimal conditions. Quantitative lignin analysis of pineapple leaves by Klason lignin method showed significant degradation of lignin by Ganoderma lucidum under SSF
Resumo:
Marine yeast have been regarded as safe and showing a beneficial impact on biotechnological process. It provides better nutritional and dietary values indicating their potential application as feed supplements in aquaculture. Brown et al. (1996) evaluated all the marine yeasts characterised with high protein content, carbohydrate, good amino acid composition and high levels of saturated fats. However, there is paucity of information on marine yeasts as feed supplements and no feed formulation has been found either in literature or in market supplemented with them. This statement supported by Zhenming et al. (2006) reported still a lack of feed composed of single cell protein (SCP) from marine yeasts with high content of protein and other nutrients. Recent research has shown that marine yeasts also have highly potential uses in food, feed, medical and biofuel industries as well as marine biotechnology (Chi et al., 2009; 2010). Sajeevan et al. (2006; 2009a) and Sarlin and Philip (2011) demonstrates that the marine yeasts Candida sake served as a high quality, inexpensive nutrient source and it had proven immunostimulatory properties for cultured shrimps. This strain has been made part of the culture collection of National Centre for Aquatic Animal Health, Cochin University of Science and Technology as Candida MCCF 101. Over the years marine yeasts have been gaining increased attention in animal feed industry due to their nutritional value and immune boosting property.Therefore, the present study was undertaken, and focused on the nutritional quality, optimization of large scale production and evaluation of its protective effect on Koi carp from Aeromonas infection
Resumo:
A study was undertaken to isolate phytase producers from environment and to segregate the most highly efficient phytase producer and to develop a bioprocess technology for commercial application. During this process, a potential phytase producer Bacillus MCCB 242 was isolated and characterized phenotypically and genotypically. Subsequently, phytase production was optimized, the enzyme purified and characterized and an appropriate downstream process also could be standardized.Precisely, through this work an environmental isolate Bacillus MCCB 242 could be brought out as phytase producer for commercial application. The enzyme production could be optimized and characterized, and an appropriate downstream process standardized. Cytotoxicity studies revealed the enzyme safe for feed application, especially in fish.
Resumo:
Post-transcriptional gene silencing by RNA interference is mediated by small interfering RNA called siRNA. This gene silencing mechanism can be exploited therapeutically to a wide variety of disease-associated targets, especially in AIDS, neurodegenerative diseases, cholesterol and cancer on mice with the hope of extending these approaches to treat humans. Over the recent past, a significant amount of work has been undertaken to understand the gene silencing mediated by exogenous siRNA. The design of efficient exogenous siRNA sequences is challenging because of many issues related to siRNA. While designing efficient siRNA, target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. So before doing gene silencing by siRNAs, it is essential to analyze their off-target effects in addition to their inhibition efficiency against a particular target. Hence designing exogenous siRNA with good knock-down efficiency and target specificity is an area of concern to be addressed. Some methods have been developed already by considering both inhibition efficiency and off-target possibility of siRNA against agene. Out of these methods, only a few have achieved good inhibition efficiency, specificity and sensitivity. The main focus of this thesis is to develop computational methods to optimize the efficiency of siRNA in terms of “inhibition capacity and off-target possibility” against target mRNAs with improved efficacy, which may be useful in the area of gene silencing and drug design for tumor development. This study aims to investigate the currently available siRNA prediction approaches and to devise a better computational approach to tackle the problem of siRNA efficacy by inhibition capacity and off-target possibility. The strength and limitations of the available approaches are investigated and taken into consideration for making improved solution. Thus the approaches proposed in this study extend some of the good scoring previous state of the art techniques by incorporating machine learning and statistical approaches and thermodynamic features like whole stacking energy to improve the prediction accuracy, inhibition efficiency, sensitivity and specificity. Here, we propose one Support Vector Machine (SVM) model, and two Artificial Neural Network (ANN) models for siRNA efficiency prediction. In SVM model, the classification property is used to classify whether the siRNA is efficient or inefficient in silencing a target gene. The first ANNmodel, named siRNA Designer, is used for optimizing the inhibition efficiency of siRNA against target genes. The second ANN model, named Optimized siRNA Designer, OpsiD, produces efficient siRNAs with high inhibition efficiency to degrade target genes with improved sensitivity-specificity, and identifies the off-target knockdown possibility of siRNA against non-target genes. The models are trained and tested against a large data set of siRNA sequences. The validations are conducted using Pearson Correlation Coefficient, Mathews Correlation Coefficient, Receiver Operating Characteristic analysis, Accuracy of prediction, Sensitivity and Specificity. It is found that the approach, OpsiD, is capable of predicting the inhibition capacity of siRNA against a target mRNA with improved results over the state of the art techniques. Also we are able to understand the influence of whole stacking energy on efficiency of siRNA. The model is further improved by including the ability to identify the “off-target possibility” of predicted siRNA on non-target genes. Thus the proposed model, OpsiD, can predict optimized siRNA by considering both “inhibition efficiency on target genes and off-target possibility on non-target genes”, with improved inhibition efficiency, specificity and sensitivity. Since we have taken efforts to optimize the siRNA efficacy in terms of “inhibition efficiency and offtarget possibility”, we hope that the risk of “off-target effect” while doing gene silencing in various bioinformatics fields can be overcome to a great extent. These findings may provide new insights into cancer diagnosis, prognosis and therapy by gene silencing. The approach may be found useful for designing exogenous siRNA for therapeutic applications and gene silencing techniques in different areas of bioinformatics.
Resumo:
In this report, we discuss the application of global optimization and Evolutionary Computation to distributed systems. We therefore selected and classified many publications, giving an insight into the wide variety of optimization problems which arise in distributed systems. Some interesting approaches from different areas will be discussed in greater detail with the use of illustrative examples.
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.
Resumo:
Summary - Cooking banana is one of the most important crops in Uganda; it is a staple food and source of household income in rural areas. The most common cooking banana is locally called matooke, a Musa sp triploid acuminate genome group (AAA-EAHB). It is perishable and traded in fresh form leading to very high postharvest losses (22-45%). This is attributed to: non-uniform level of harvest maturity, poor handling, bulk transportation and lack of value addition/processing technologies, which are currently the main challenges for trade and export, and diversified utilization of matooke. Drying is one of the oldest technologies employed in processing of agricultural produce. A lot of research has been carried out on drying of fruits and vegetables, but little information is available on matooke. Drying of matooke and milling it to flour extends its shelf-life is an important means to overcome the above challenges. Raw matooke flour is a generic flour developed to improve shelf stability of the fruit and to find alternative uses. It is rich in starch (80 - 85%db) and subsequently has a high potential as a calorie resource base. It possesses good properties for both food and non-food industrial use. Some effort has been done to commercialize the processing of matooke but there is still limited information on its processing into flour. It was imperative to carry out an in-depth study to bridge the following gaps: lack of accurate information on the maturity window within which matooke for processing into flour can be harvested leading to non-uniform quality of matooke flour; there is no information on moisture sorption isotherm for matooke from which the minimum equilibrium moisture content in relation to temperature and relative humidity is obtainable, below which the dry matooke would be microbiologically shelf-stable; and lack of information on drying behavior of matooke and standardized processing parameters for matooke in relation to physicochemical properties of the flour. The main objective of the study was to establish the optimum harvest maturity window and optimize the processing parameters for obtaining standardized microbiologically shelf-stable matooke flour with good starch quality attributes. This research was designed to: i) establish the optimum maturity harvest window within which matooke can be harvested to produce a consistent quality of matooke flour, ii) establish the sorption isotherms for matooke, iii) establish the effect of process parameters on drying characteristics of matooke, iv) optimize the drying process parameters for matooke, v) validate the models of maturity and optimum process parameters and vi) standardize process parameters for commercial processing of matooke. Samples were obtained from a banana plantation at Presidential Initiative on Banana Industrial Development (PIBID), Technology Business Incubation Center (TBI) at Nyaruzunga – Bushenyi in Western Uganda. A completely randomized design (CRD) was employed in selecting the banana stools from which samples for the experiments were picked. The cultivar Mbwazirume which is soft cooking and commonly grown in Bushenyi was selected for the study. The static gravitation method recommended by COST 90 Project (Wolf et al., 1985), was used for determination of moisture sorption isotherms. A research dryer developed for this research. All experiments were carried out in laboratories at TBI. The physiological maturity of matooke cv. mbwazirume at Bushenyi is 21 weeks. The optimum harvest maturity window for commercial processing of matooke flour (Raw Tooke Flour - RTF) at Bushenyi is between 15-21 weeks. The finger weight model is recommended for farmers to estimate harvest maturity for matooke and the combined model of finger weight and pulp peel ratio is recommended for commercial processors. Matooke isotherms exhibited type II curve behavior which is characteristic of foodstuffs. The GAB model best described all the adsorption and desorption moisture isotherms. For commercial processing of matooke, in order to obtain a microbiologically shelf-stable dry product. It is recommended to dry it to moisture content below or equal to 10% (wb). The hysteresis phenomenon was exhibited by the moisture sorption isotherms for matooke. The isoteric heat of sorption for both adsorptions and desorption isotherms increased with decreased moisture content. The total isosteric heat of sorption for matooke: adsorption isotherm ranged from 4,586 – 2,386 kJ/kg and desorption isotherm from 18,194– 2,391 kJ/kg for equilibrium moisture content from 0.3 – 0.01 (db) respectively. The minimum energy required for drying matooke from 80 – 10% (wb) is 8,124 kJ/kg of water removed. Implying that the minimum energy required for drying of 1 kg of fresh matooke from 80 - 10% (wb) is 5,793 kJ. The drying of matooke takes place in three steps: the warm-up and the two falling rate periods. The drying rate constant for all processing parameters ranged from 5,793 kJ and effective diffusivity ranged from 1.5E-10 - 8.27E-10 m2/s. The activation energy (Ea) for matooke was 16.3kJ/mol (1,605 kJ/kg). Comparing the activation energy (Ea) with the net isosteric heat of sorption for desorption isotherm (qst) (1,297.62) at 0.1 (kg water/kg dry matter), indicated that Ea was higher than qst suggesting that moisture molecules travel in liquid form in matooke slices. The total color difference (ΔE*) between the fresh and dry samples, was lowest for effect of thickness of 7 mm, followed by air velocity of 6 m/s, and then drying air temperature at 70˚C. The drying system controlled by set surface product temperature, reduced the drying time by 50% compared to that of a drying system controlled by set air drying temperature. The processing parameters did not have a significant effect on physicochemical and quality attributes, suggesting that any drying air temperature can be used in the initial stages of drying as long as the product temperature does not exceed gelatinization temperature of matooke (72˚C). The optimum processing parameters for single-layer drying of matooke are: thickness = 3 mm, air temperatures 70˚C, dew point temperature 18˚C and air velocity 6 m/s overflow mode. From practical point of view it is recommended that for commercial processing of matooke, to employ multi-layer drying of loading capacity equal or less than 7 kg/m², thickness 3 mm, air temperatures 70˚C, dew point temperature 18˚C and air velocity 6 m/s overflow mode.
Resumo:
Tunable Optical Sensor Arrays (TOSA) based on Fabry-Pérot (FP) filters, for high quality spectroscopic applications in the visible and near infrared spectral range are investigated within this work. The optical performance of the FP filters is improved by using ion beam sputtered niobium pentoxide (Nb2O5) and silicon dioxide (SiO2) Distributed Bragg Reflectors (DBRs) as mirrors. Due to their high refractive index contrast, only a few alternating pairs of Nb2O5 and SiO2 films can achieve DBRs with high reflectivity in a wide spectral range, while ion beam sputter deposition (IBSD) is utilized due to its ability to produce films with high optical purity. However, IBSD films are highly stressed; resulting in stress induced mirror curvature and suspension bending in the free standing filter suspensions of the MEMS (Micro-Electro-Mechanical Systems) FP filters. Stress induced mirror curvature results in filter transmission line degradation, while suspension bending results in high required filter tuning voltages. Moreover, stress induced suspension bending results in higher order mode filter operation which in turn degrades the optical resolution of the filter. Therefore, the deposition process is optimized to achieve both near zero absorption and low residual stress. High energy ion bombardment during film deposition is utilized to reduce the film density, and hence the film compressive stress. Utilizing this technique, the compressive stress of Nb2O5 is reduced by ~43%, while that for SiO2 is reduced by ~40%. Filters fabricated with stress reduced films show curvatures as low as 100 nm for 70 μm mirrors. To reduce the stress induced bending in the free standing filter suspensions, a stress optimized multi-layer suspension design is presented; with a tensile stressed metal sandwiched between two compressively stressed films. The stress in Physical Vapor Deposited (PVD) metals is therefore characterized for use as filter top-electrode and stress compensating layer. Surface micromachining is used to fabricate tunable FP filters in the visible spectral range using the above mentioned design. The upward bending of the suspensions is reduced from several micrometers to less than 100 nm and 250 nm for two different suspension layer combinations. Mechanical tuning of up to 188 nm is obtained by applying 40 V of actuation voltage. Alternatively, a filter line with transmission of 65.5%, Full Width at Half Maximum (FWHM) of 10.5 nm and a stopband of 170 nm (at an output wavelength of 594 nm) is achieved. Numerical model simulations are also performed to study the validity of the stress optimized suspension design for the near infrared spectral range, wherein membrane displacement and suspension deformation due to material residual stress is studied. Two bandpass filter designs based on quarter-wave and non-quarter-wave layers are presented as integral components of the TOSA. With a filter passband of 135 nm and a broad stopband of over 650 nm, high average filter transmission of 88% is achieved inside the passband, while maximum filter transmission of less than 1.6% outside the passband is achieved.
Resumo:
Micromirror arrays are a very strong candidate for future energy saving applications. Within this work, the fabrication process for these micromirror arrays has been optimized and some steps for the large area fabrication of micromirror modules were performed. At first the surface roughness of the insulation layer of silicon dioxide (SiO2) was investigated. This SiO2 thin layer was deposited on three different type of substrates i.e. silicon, glass and Polyethylene Naphthalate (PEN) substrates. The deposition techniques which has been used are Plasma Enhanced Chemical Vapor Deposition (PECVD), Physical Vapor Deposition (PVD) and Ion Beam Sputter Deposition (IBSD). The thickness of the SiO2 thin layer was kept constant at 150nm for each deposition process. The surface roughness was measured by Stylus Profilometry and Atomic Force Microscopy (AFM). It was found that the layer which was deposited by IBSD has got the minimum surface roughness value and the layer which was deposited by PECVD process has the highest surface roughness value. During the same investigation, the substrate temperature of PECVD was varied from 80° C to 300° C with the step size of 40° C and it was found that the surface roughness keeps on increasing as the substrate holder temperature increases in the PECVD process. A new insulation layer system was proposed to minimize the dielectric breakdown effect in insulation layer for micromirror arrays. The conventional bilayer system was replaced by five layer system but the total thickness of insulation layer remains the same. It was found that during the actuation of micromirror arrays structure, the dielectric breakdown effect was reduced considerably as compared to the bilayer system. In the second step the fabrication process of the micromirror arrays was successfully adapted and transferred from glass substrates to the flexible PEN substrates by optimizing the conventional process recipe. In the last section, a large module of micromirror arrays was fabricated by electrically interconnecting four 10cm×10cm micromirror modules on a glass pane having dimensions of 21cm×21cm.
Resumo:
Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a geometric phase gate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov’s method yields considerably better results than either one of the two methods alone.
Resumo:
Sigmoid type belief networks, a class of probabilistic neural networks, provide a natural framework for compactly representing probabilistic information in a variety of unsupervised and supervised learning problems. Often the parameters used in these networks need to be learned from examples. Unfortunately, estimating the parameters via exact probabilistic calculations (i.e, the EM-algorithm) is intractable even for networks with fairly small numbers of hidden units. We propose to avoid the infeasibility of the E step by bounding likelihoods instead of computing them exactly. We introduce extended and complementary representations for these networks and show that the estimation of the network parameters can be made fast (reduced to quadratic optimization) by performing the estimation in either of the alternative domains. The complementary networks can be used for continuous density estimation as well.
Resumo:
We present an unsupervised learning algorithm that acquires a natural-language lexicon from raw speech. The algorithm is based on the optimal encoding of symbol sequences in an MDL framework, and uses a hierarchical representation of language that overcomes many of the problems that have stymied previous grammar-induction procedures. The forward mapping from symbol sequences to the speech stream is modeled using features based on articulatory gestures. We present results on the acquisition of lexicons and language models from raw speech, text, and phonetic transcripts, and demonstrate that our algorithm compares very favorably to other reported results with respect to segmentation performance and statistical efficiency.
Resumo:
Dynamic optimization has several key advantages. This includes the ability to work on binary code in the absence of sources and to perform optimization across module boundaries. However, it has a significant disadvantage viz-a-viz traditional static optimization: it has a significant runtime overhead. There can be performance gain only if the overhead can be amortized. In this paper, we will quantitatively analyze the runtime overhead introduced by a dynamic optimizer, DynamoRIO. We found that the major overhead does not come from the optimizer's operation. Instead, it comes from the extra code in the code cache added by DynamoRIO. After a detailed analysis, we will propose a method of trace construction that ameliorate the overhead introduced by the dynamic optimizer, thereby reducing the runtime overhead of DynamoRIO. We believe that the result of the study as well as the proposed solution is applicable to other scenarios such as dynamic code translation and managed execution that utilizes a framework similar to that of dynamic optimization.
Resumo:
We develop an extension to the tactical planning model (TPM) for a job shop by the third author. The TPM is a discrete-time model in which all transitions occur at the start of each time period. The time period must be defined appropriately in order for the model to be meaningful. Each period must be short enough so that a job is unlikely to travel through more than one station in one period. At the same time, the time period needs to be long enough to justify the assumptions of continuous workflow and Markovian job movements. We build an extension to the TPM that overcomes this restriction of period sizing by permitting production control over shorter time intervals. We achieve this by deriving a continuous-time linear control rule for a single station. We then determine the first two moments of the production level and queue length for the workstation.