961 resultados para Compiling (Electronic computers)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface electronic structure of the narrow-gap seminconductor BiTeI exhibits a large Rashba-splitting which strongly depends on the surface termination. Here we report on a detailed investigation of the surface morphology and electronic properties of cleaved BiTeI single crystals by scanning tunneling microscopy, photoelectron spectroscopy (ARPES, XPS), electron diffraction (SPA-LEED) and density functional theory calculations. Our measurements confirm a previously reported coexistence of Te- and I-terminated surface areas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Nowadays, with the unstoppable raise of different types of electronic devices (mobile phones, tablets, computers…), it has become a necessity to share all the information and functionalities they have. In order to achieve that, back in the 2013, KDE community developed an application called KDE-Connect. This application has been really useful since then, but it’s limited as it can only operate with devices in the same network. Therefore, in the following pages, this project will explain and develop the best solution to extend its functionalities so any pair of devices can share information in an anonymous, private and easy way, at any geographic location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]Este proyecto consiste en el diseño de un sistema de monitorización de estructuras (SHM) con procesamiento paralelo. Los sistemas SHM sirven para analizar la integridad de estructuras y detectar daños en las mismas. El sistema diseñado utiliza la técnica de ondas ultrasónicas superficiales. Integra todos los circuitos electrónicos para generar y adquirir las señales. También incluye un procesador para tratar las señales y detectar los daños de la estructura. El sistema se ha diseñado para conectar varios equipos en paralelo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers. (c) 2005 Elsevier B.V. All tights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structures and absorption spectra for the perfect PbMoO4 crystal and the crystal containing lead vacancy V-Pb(2-) with lattice structure optimized are calculated using density functional theory code CASTEP. The calculated absorption spectra of the PbMoO4 crystal containing V-Pb(2-) exhibit three absorption bands peaking at 2.0 eV (620 nm), 3.0 eV (413 run) and 3.3 eV (375 nm), which are in good agreement with experimental values. The theory predicts that the 390 nm, 430 nm and 580 run absorption bands are related to the existence of V-Pb(2-) in the PbMoO4 crystal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Nature Science Foundation of China (Grant No. 60607015)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fields of organic electronics and spintronics have the potential to revolutionize the electronics industry. Finding the right materials that can retain their electrical and spin properties when combined is a technological and fundamental challenge. We carry out the study of three archetypal organic molecules in intimate contact with the BiAg2 surface alloy. We show that the BiAg2 alloy is an especially suited substrate due to its inertness as support for molecular films, exhibiting an almost complete absence of substrate-molecular interactions. This is inferred from the persistence of a completely unaltered giant spin-orbit split surface state of the BiAg2 substrate, and from the absence of significant metallic screening of charged molecular levels in the organic layer. Spin-orbit split states in BiAg2 turn out to be far more robust to organic overlayers than previously thought.