958 resultados para Classical conditioning
Resumo:
The production and perception of music is a multimodal activity involving auditory, visual and conceptual processing, integrating these with prior knowledge and environmental experience. Musicians utilise expressive physical nuances to highlight salient features of the score. The question arises within the literature as to whether performers’ non-technical, non-sound-producing movements may be communicatively meaningful and convey important structural information to audience members and co-performers. In the light of previous performance research (Vines et al., 2006, Wanderley, 2002, Davidson, 1993), and considering findings within co-speech gestural research and auditory and audio-visual neuroscience, this thesis examines the nature of those movements not directly necessary for the production of sound, and their particular influence on audience perception. Within the current research 3D performance analysis is conducted using the Vicon 12- camera system and Nexus data-processing software. Performance gestures are identified as repeated patterns of motion relating to music structure, which not only express phrasing and structural hierarchy but are consistently and accurately interpreted as such by a perceiving audience. Gestural characteristics are analysed across performers and performance style using two Chopin preludes selected for their diverse yet comparable structures (Opus 28:7 and 6). Effects on perceptual judgements of presentation modes (visual-only, auditory-only, audiovisual, full- and point-light) and viewing conditions are explored. This thesis argues that while performance style is highly idiosyncratic, piano performers reliably generate structural gestures through repeated patterns of upper-body movement. The shapes and locations of phrasing motions are identified particular to the sample of performers investigated. Findings demonstrate that despite the personalised nature of the gestures, performers use increased velocity of movements to emphasise musical structure and that observers accurately and consistently locate phrasing junctures where these patterns and variation in motion magnitude, shape and velocity occur. By viewing performance motions in polar (spherical) rather than cartesian coordinate space it is possible to get mathematically closer to the movement generated by each of the nine performers, revealing distinct patterns of motion relating to phrasing structures, regardless of intended performance style. These patterns are highly individualised both to each performer and performed piece. Instantaneous velocity analysis indicates a right-directed bias of performance motion variation at salient structural features within individual performances. Perceptual analyses demonstrate that audience members are able to accurately and effectively detect phrasing structure from performance motion alone. This ability persists even for degraded point-light performances, where all extraneous environmental information has been removed. The relative contributions of audio, visual and audiovisual judgements demonstrate that the visual component of a performance does positively impact on the over- all accuracy of phrasing judgements, indicating that receivers are most effective in their recognition of structural segmentations when they can both see and hear a performance. Observers appear to make use of a rapid online judgement heuristics, adjusting response processes quickly to adapt and perform accurately across multiple modes of presentation and performance style. In line with existent theories within the literature, it is proposed that this processing ability may be related to cognitive and perceptual interpretation of syntax within gestural communication during social interaction and speech. Findings of this research may have future impact on performance pedagogy, computational analysis and performance research, as well as potentially influencing future investigations of the cognitive aspects of musical and gestural understanding.
Resumo:
This thesis describes a collection of studies into the electrical response of a III-V MOS stack comprising metal/GaGdO/GaAs layers as a function of fabrication process variables and the findings of those studies. As a result of this work, areas of improvement in the gate process module of a III-V heterostructure MOSFET were identified. Compared to traditional bulk silicon MOSFET design, one featuring a III-V channel heterostructure with a high-dielectric-constant oxide as the gate insulator provides numerous benefits, for example: the insulator can be made thicker for the same capacitance, the operating voltage can be made lower for the same current output, and improved output characteristics can be achieved without reducing the channel length further. It is known that transistors composed of III-V materials are most susceptible to damage induced by radiation and plasma processing. These devices utilise sub-10 nm gate dielectric films, which are prone to contamination, degradation and damage. Therefore, throughout the course of this work, process damage and contamination issues, as well as various techniques to mitigate or prevent those have been investigated through comparative studies of III-V MOS capacitors and transistors comprising various forms of metal gates, various thicknesses of GaGdO dielectric, and a number of GaAs-based semiconductor layer structures. Transistors which were fabricated before this work commenced, showed problems with threshold voltage control. Specifically, MOSFETs designed for normally-off (VTH > 0) operation exhibited below-zero threshold voltages. With the results obtained during this work, it was possible to gain an understanding of why the transistor threshold voltage shifts as the gate length decreases and of what pulls the threshold voltage downwards preventing normally-off device operation. Two main culprits for the negative VTH shift were found. The first was radiation damage induced by the gate metal deposition process, which can be prevented by slowing down the deposition rate. The second was the layer of gold added on top of platinum in the gate metal stack which reduces the effective work function of the whole gate due to its electronegativity properties. Since the device was designed for a platinum-only gate, this could explain the below zero VTH. This could be prevented either by using a platinum-only gate, or by matching the layer structure design and the actual gate metal used for the future devices. Post-metallisation thermal anneal was shown to mitigate both these effects. However, if post-metallisation annealing is used, care should be taken to ensure it is performed before the ohmic contacts are formed as the thermal treatment was shown to degrade the source/drain contacts. In addition, the programme of studies this thesis describes, also found that if the gate contact is deposited before the source/drain contacts, it causes a shift in threshold voltage towards negative values as the gate length decreases, because the ohmic contact anneal process affects the properties of the underlying material differently depending on whether it is covered with the gate metal or not. In terms of surface contamination; this work found that it causes device-to-device parameter variation, and a plasma clean is therefore essential. This work also demonstrated that the parasitic capacitances in the system, namely the contact periphery dependent gate-ohmic capacitance, plays a significant role in the total gate capacitance. This is true to such an extent that reducing the distance between the gate and the source/drain ohmic contacts in the device would help with shifting the threshold voltages closely towards the designed values. The findings made available by the collection of experiments performed for this work have two major applications. Firstly, these findings provide useful data in the study of the possible phenomena taking place inside the metal/GaGdO/GaAs layers and interfaces as the result of chemical processes applied to it. In addition, these findings allow recommendations as to how to best approach fabrication of devices utilising these layers.
Resumo:
International audience
Resumo:
We develop some new techniques to calculate the Schur indicator for self-dual irreducible Langlands quotients of the principal series representations. Using these techniques we derive some new formulas for the Schur indicator and the real-quaternionic indicator. We make progress towards developing an algorithm to decide whether or not two root data are isomorphic. When the derived group has cyclic center, we solve the isomorphism problem completely. An immediate consequence is a clean and precise classification theorem for connected complex reductive groups whose derived groups have cyclic center.
Resumo:
168 p.
Resumo:
Many geological formations consist of crystalline rocks that have very low matrix permeability but allow flow through an interconnected network of fractures. Understanding the flow of groundwater through such rocks is important in considering disposal of radioactive waste in underground repositories. A specific area of interest is the conditioning of fracture transmissivities on measured values of pressure in these formations. This is the process where the values of fracture transmissivities in a model are adjusted to obtain a good fit of the calculated pressures to measured pressure values. While there are existing methods to condition transmissivity fields on transmissivity, pressure and flow measurements for a continuous porous medium there is little literature on conditioning fracture networks. Conditioning fracture transmissivities on pressure or flow values is a complex problem because the measurements are not linearly related to the fracture transmissivities and they are also dependent on all the fracture transmissivities in the network. We present a new method for conditioning fracture transmissivities on measured pressure values based on the calculation of certain basis vectors; each basis vector represents the change to the log transmissivity of the fractures in the network that results in a unit increase in the pressure at one measurement point whilst keeping the pressure at the remaining measurement points constant. The fracture transmissivities are updated by adding a linear combination of basis vectors and coefficients, where the coefficients are obtained by minimizing an error function. A mathematical summary of the method is given. This algorithm is implemented in the existing finite element code ConnectFlow developed and marketed by Serco Technical Services, which models groundwater flow in a fracture network. Results of the conditioning are shown for a number of simple test problems as well as for a realistic large scale test case.
Resumo:
The aim of this paper is to extend the classical envelope theorem from scalar to vector differential programming. The obtained result allows us to measure the quantitative behaviour of a certain set of optimal values (not necessarily a singleton) characterized to become minimum when the objective function is composed with a positive function, according to changes of any of the parameters which appear in the constraints. We show that the sensitivity of the program depends on a Lagrange multiplier and its sensitivity.
Resumo:
L'obiettivo di questo lavoro è quello di analizzare la potenza emessa da una carica elettrica accelerata. Saranno studiati due casi speciali: accelerazione lineare e accelerazione circolare. Queste sono le configurazioni più frequenti e semplici da realizzare. Il primo passo consiste nel trovare un'espressione per il campo elettrico e il campo magnetico generati dalla carica. Questo sarà reso possibile dallo studio della distribuzione di carica di una sorgente puntiforme e dei potenziali che la descrivono. Nel passo successivo verrà calcolato il vettore di Poynting per una tale carica. Useremo questo risultato per trovare la potenza elettromagnetica irradiata totale integrando su tutte le direzioni di emissione. Nell'ultimo capitolo, infine, faremo uso di tutto ciò che è stato precedentemente trovato per studiare la potenza emessa da cariche negli acceleratori.
Resumo:
The mere presence of the term īśvara in Patañjali’s Yogasūtra has come to affect the meaning of both the path and the goal of Classical Yoga as well as the meaning of the term Yoga itself. The frequent translation of the term īśvara as God leads to the system of Classical Yoga to be labeled as theistic, particularly obscuring the interpretation of īśvarapraṇidhāna, a functional component of the system, as well as perpetuating a syncretic trend that has led to the popular understanding of Yoga as ‘union with the divine’. From identifying problematic hermeneutical trends and their underlying causes, as well as understanding the term within the constraints of the original text in its original Sanskrit, the term īśvara emerges as the archetype of an ultimate reality functioning as a practical and experiential tool providing the yogi with a direct glimpse of its true nature.
Resumo:
LysR-type transcriptional regulators (LTTRs) are emerging as key circuit components in regulating microbial stress responses and are implicated in modulating oxidative stress in the human opportunistic pathogen Pseudomonas aeruginosa. The oxidative stress response encapsulates several strategies to overcome the deleterious effects of reactive oxygen species. However, many of the regulatory components and associated molecular mechanisms underpinning this key adaptive response remain to be characterised. Comparative analysis of publically available transcriptomic datasets led to the identification of a novel LTTR, PA2206, whose expression was altered in response to a range of host signals in addition to oxidative stress. PA2206 was found to be required for tolerance to H2O2 in vitro and lethality in vivo in the Zebrafish embryo model of infection. Transcriptomic analysis in the presence of H2O2 showed that PA2206 altered the expression of 58 genes, including a large repertoire of oxidative stress and iron responsive genes, independent of the master regulator of oxidative stress, OxyR. Contrary to the classic mechanism of LysR regulation, PA2206 did not autoregulate its own expression and did not influence expression of adjacent or divergently transcribed genes. The PA2214-15 operon was identified as a direct target of PA2206 with truncated promoter fragments revealing binding to the 5'-ATTGCCTGGGGTTAT-3' LysR box adjacent to the predicted -35 region. PA2206 also interacted with the pvdS promoter suggesting a global dimension to the PA2206 regulon, and suggests PA2206 is an important regulatory component of P. aeruginosa adaptation during oxidative stress.
Resumo:
We analysed the viscera of 534 moles (Ta l p a spp.) from 30 of the 47 provinces of peninsular Spain, including 255 individuals of T. europaea from eight provinces, 154 individuals of T. occidentalis from 20 provinces, and 125 unidentified Ta l p a individuals from two provinces. We identified their helminth parasites and determined parasite species richness. We related parasite species richness with sampling effort using both a linear and a logarithmic function. We then performed stepwise linear regressions to predict mole parasite species richness from a small set of selected predictor variables that included sampling effort. We applied the resulting models to forecast T. euro p a e a, T. occidentalis, and Ta l p a spp. parasite species richness in all provinces with recorded host presence, assuming different levels of sampling eff o r t . F i n a l l y, we used partial regression analysis to partition the variation explained by each of the selected variables in the models. We found that mole parasite species richness is strongly conditioned by sampling effort, but that other factors such as cropland area and environmental disturbance have significant independent effects.
Resumo:
Context: Even though dry-land S&C training is a common practice in swimming, there are countless uncertainties over it effects in performance of age group swimmers. Objective: To investigate the effects of dry-land S&C programs in swimming performance of age group swimmers. Participants: A total of 21 male competitive swimmers (12.7±0.7 years) were randomly assigned to the Control Group (n=7) and experimental GR1 and GR2 (n=7 for each group). Intervention: Control group performed a 10-week training period of swim training alone, GR1 followed a 6-week dry-land S&C program based on sets/repetitions plus a 4-week swim training program alone and GR2 followed a 6-week dry-land S&C program focused on explosiveness, plus a 4-week program of swim training alone. Results: For the dry-land tests a time effect was observed between week 0 and week 6 for vertical jump (p<0.01) in both experimental groups, and for the GR2 ball throwing (p<0.01), with moderate-strong effect sizes. The time*group analyses showed that for performance in 50 m, differences were significant, with the GR2 presenting higher improvements than their counterparts (F=4.156; ƿ=0.007; η2=0.316) at week 10. Conclusions: The results suggest that 6 weeks of a complementary dry-land S&C training may lead to improvements in dry-land strength. Furthermore, a 4-week adaptation period was mandatory to achieve beneficial transfer for aquatic performance. Additional benefits may occur if coaches plan the dry-land S&C training focusing on explosiveness.