984 resultados para Bruno Flierl


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to evaluate the bone healing kinetics around commercially pure titanium implants following inferior alveolar nerve (IAN) lateralization in a rabbit model. Materials and Methods: Inferior alveolar nerve lateralization was performed in 16 adult female rabbits (Oryctolagus cuniculus). During the nerve lateralization procedure, 1 implant was placed through the mandibular canal, and the IAN was replaced in direct contact with the implant. During the 8-week healing period, various bone labels were administered for fluorescent microscopy analysis. The animals were euthanized by anesthesia overdose, and the mandibular blocks were exposed by sharp dissection. Nondecalcified samples were prepared for optical light and scanning electron microscopy (SEM) evaluation. Results: SEM evaluation showed bone modeling/remodeling between the IAN and implant surface. Fluorochrome area fraction labeling at different times during the healing period showed that bone apposition mainly occurred during the first 2 weeks after implantation. Conclusions: The results obtained showed that bone healing/deposition occurred between the alveolar nerves in contact with a commercially pure titanium implant. No interaction between the nerve and the implant was detected after the 8-week healing period. Appositional bone healing occurred around the nerve bundle structure, restoring the mandibular canal integrity and morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: This study evaluated the effects of diclofenac sodium and meloxicam on peri-implant bone healing. Methods: Thirty male rats were divided into three groups: the control group (CG) received no drug; the diclofenac sodium group (DSG) received 1.07 mg/kg twice a day for 5 days; and the meloxicam group (MG) received 0.2 mg/kg daily for 5 days. A screw-shaped titanium implant was placed in the tibia. Fluorochromes, oxytetracycline (OxT), calcein (CA), and alizarin (AL), were injected at 7, 14, and 21 days, respectively, after implantation, and the animals were sacrificed 28 days after implant placement. The percentages of OxT-, CA-, and AL-labeled bone as well as the percentages of bone-to-implant contact (BIC), cortical bone area (CBA), and trabecular bone area (TBA) within the implant threads were evaluated. Results: Bone healing was delayed in the DSG during the first 14 days after implant placement (OxT-labeled bone: DSG: 5.3% +/- 7.3% versus CG: 13.2% +/- 9.8%, P= 0.002, and versus MG: 14.4% +/- 13.1%, P = 0.05). The percentages of BIC (DSG: 49.6% +/- 21.9%; MG: 67.1% +/- 22.8%; and CG: 68.1% +/- 22.8%) and CBA (DSG: 63.7% +/- 21.2%; MG: 82.7% +/- 12.4%; CG: 84.9% +/- 10.6%) were lower in the DSG compared to the MG and CG (P<0.001). The percentage of TBA was significantly greater in the DSG compared to the MG and CG (DSG: 36.3% +/- 21.2% versus MG: 17.3% +/- 12.7% and versus CG: 15.1% +/- 10.6%; P<0.001). Conclusion: Diclofenac sodium seemed to delay peri-implant bone healing and to decrease BIC, whereas meloxicam had no negative effect on peri-implant bone healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure to a high glucose medium or diabetes has been found to protect the heart against ischaemia. The activation of antiapoptotic and proliferative factors seems to be involved in this cardioprotection. This study was designed to evaluate the role of hyperglycaemia in cardiac function, programmed cell survival, and cell death in diabetic rats after myocardial infarction (MI). Male Wistar rats were divided into four groups (n = 8): control (C), diabetic (D), myocardial infarcted (MI), and diabetic myocardial infarcted (DI). The following measures were assessed in the left ventricle: size of MI, systolic and diastolic function by echocardiography, cytokines by ELISA (TNF-alpha, IL-1 beta, IL-6, and IL-10), gene expression by real-time PCR (Bax, Fas, p53, Bcl-2, HIF1-alpha, VEGF, and IL8r), caspase-3 activity by spectrofluorometric assay, glucose transporter type 1 and 4 (GLUT-1 and GLUT-4) protein expression by western blotting, and capillary density and fibrosis by histological analysis. Systolic function was improved by hyperglycaemia in the DI group, and this was accompanied by no improvement in diastolic dysfunction, a reduction of 36% in MI size, reduced proinflammatory cytokines, apoptosis activation, and an increase in cell survival factors (HIF1-alpha, VEGFa and IL8r) assessed 15 days post-MI. Moreover, hyperglycaemia resulted in angiogenesis (increased capillary density) before and after MI, accompanied by a reduction in fibrosis. Together, these results suggest that greater plasticity and cellular resistance to ischaemic injury result from chronic diabetic hyperglycaemia in rat hearts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invertebrates protect themselves against microbial infection through cellular and humoral immune defenses. Since the available information on the immune system of spiders is scarce, the main goat of the present study was to investigate the role of hemocytes and antimicrobial peptides (AMPs) in defense against microbes of spider Acanthoscurria gomesiana. We previously described the purification and characterization of two AMPs from the hemocytes of naive spider A. gomesiana, gomesin and acanthoscurrin. Here we show that 57% of the hemocytes store both gomesin and acanthoscurrin, either in the same or in different granules. Progomesin labeling in hemocyte granules indicates that gomesin is addressed to those organelles as a propeptide. In vivo and in vitro experiments showed that lipopolysaccharide (LPS) and yeast caused the hemocytes to migrate. Once they have reached the infection site, hemocytes may secrete coagulation cascade components and AMPs to cell-free hemolymph. Furthermore, our results suggest that phagocytosis is not the major defense mechanism activated after microbial challenge. Therefore, the main reactions involved in the spider immune defense might be coagulation and AMP secretion. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: The objective of this study was to analyze the influence of obesity and insulin resistance on tumor development and, in turn, the effect of insulin sensitizing agents. Main methods: Male offspring of Wistar rats received monosodium glutamate (400 mg/kg) (obese) or saline (control) from the second to sixth day after birth. Sixteen-week-old control and obese rats received 5 x 10(5) Walker-256 tumor cells, subcutaneously injected into the right flank. Some of the obese and control rats received concomitant treatment with metformin (300 mg/kg) by gavage. At the 18th week, obesity was characterized. The percentage of rats that developed tumors, the tumor relative weight and the percentage of cachexia incidence were analyzed. The tumor tissue was evaluated histologically by means of hematoxylin and eosin staining. Key findings: Metformin did not correct the insulin resistance in obese rats. The tumor development was significantly higher in the obese group, whereas metformin treatment reduced it. After pathological analysis, we observed that the tumor tissues were similar in all groups except for adipocytes, which were found in greater quantity in the obese and metformin-treated obese groups. The area of tumor necrosis was higher in the group treated with metformin when compared with the untreated one. Significance: Metformin reduced Walker-256 tumor development but not cachexia in obese rats. The reduction occurred independently of the correction of insulin resistance. Metformin increased the area of necrosis in tumor tissues, which may have contributed to the reduced tumor development. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: In this study we have assessed the renal and cardiac consequences of ligature-induced periodontitis in both normotensive and nitric oxide (NO)-deficient (L-NAME-treated) hypertensive rats. Materials and methods: Oral L-NAME (or water) treatment was started two weeks prior to induction of periodontitis. Rats were sacrificed 3, 7 or 14 days after ligature placement, and alveolar bone loss was evaluated radiographically. Thiobarbituric reactive species (TBARS; a lipid peroxidation index), protein nitrotyrosine (NT; a marker of protein nitration) and myeloperoxidase activity (MPO; a neutrophil marker) were determined in the heart and kidney. Results: In NO-deficient hypertensive rats, periodontitis-induced alveolar bone loss was significantly diminished. In addition, periodontitis-induced cardiac NT elevation was completely prevented by L-NAME treatment. On the other hand L-NAME treatment enhanced MPO production in both heart and kidneys of rats with periodontitis. No changes due to periodontitis were observed in cardiac or renal TBARS content. Conclusions: In addition to mediating alveolar bone loss, NO contributes to systemic effects of periodontitis in the heart and kidney. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone loss associated with cyclosporin A (CsA) therapy can result in serious morbidity to patients. Intermittent administration of 1,25 Vitamin D and calcitonin reduces osteopenia in a murine model of postmenopausal osteoporosis. The purpose of this study was to evaluate the effects of this therapeutic approach on CsA-induced alveolar bone loss in rats. Forty male Wistar rats were allocated to four experimental groups according to the treatment received during 8 weeks: (1) CsA (10 mg/kg/day, s.c.); (2) 1,25 Vitamin D (2 mu g/kg, p.o.; in weeks 1, 3, 5, and 7) plus calcitonin (2 mu g/kg, i.p.; in weeks 2, 4, 6, and 8); (3) CsA concurrently with intermittent 1,25 Vitamin D and calcitonin administration; and (4) the control treatment group (vehicle). At the end of the 8-week treatment period, serum concentrations of bone-specific alkaline phosphatase, tartrate-resistant acid phosphatase (TRAP-5b), osteocalcin, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor alpha (TNF-alpha) were measured and an analysis of bone volume, bone surface, number of osteoblasts, and osteoclasts was performed. CsA administration resulted in significant alveolar bone resorption, as assessed by a lower bone volume and an increased number of osteoclasts, and increased serum bone-specific alkaline phosphatase, TRAP-5b, IL-1 beta, IL-6, and TNF-alpha concentrations. The intermittent administration of calcitriol and calcitonin prevented the CsA-induced osteopenic changes and the increased serum concentrations of TRAP-5b and inflammatory cytokines. Intermittent calcitriol/calcitonin therapy prevents CsA-induced alveolar bone loss in rats and normalizes the production of associated inflammatory mediators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our aim was to investigate the immediate effects of bilateral, 830 nm, low-level laser therapy (LLLT) on high-intensity exercise and biochemical markers of skeletal muscle recovery, in a randomised, double-blind, placebo-controlled, crossover trial set in a sports physiotherapy clinic. Twenty male athletes (nine professional volleyball players and eleven adolescent soccer players) participated. Active LLLT (830 nm wavelength, 100 mW, spot size 0.0028 cm(2), 3-4 J per point) or an identical placebo LLLT was delivered to five points in the rectus femoris muscle (bilaterally). The main outcome measures were the work performed in the Wingate test: 30 s of maximum cycling with a load of 7.5% of body weight, and the measurement of blood lactate (BL) and creatine kinase (CK) levels before and after exercise. There was no significant difference in the work performed during the Wingate test (P > 0.05) between subjects given active LLLT and those given placebo LLLT. For volleyball athletes, the change in CK levels from before to after the exercise test was significantly lower (P = 0.0133) for those given active LLLT (2.52 U l(-1) +/- 7.04 U l(-1)) than for those given placebo LLLT (28.49 U l(-1) +/- 22.62 U l(-1)). For the soccer athletes, the change in blood lactate levels from before exercise to 15 min after exercise was significantly lower (P < 0.01) in the group subjected to active LLLT (8.55 mmol l(-1) +/- 2.14 mmol l(-1)) than in the group subjected to placebo LLLT (10.52 mmol l(-1) +/- 1.82 mmol l(-1)). LLLT irradiation before the Wingate test seemed to inhibit an expected post-exercise increase in CK level and to accelerate post-exercise lactate removal without affecting test performance. These findings suggest that LLLT may be of benefit in accelerating post-exercise recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Objectives: There are some indications that low-level laser therapy (LLLT) may delay the development of skeletal muscle fatigue during high-intensity exercise. There have also been claims that LED cluster probes may be effective for this application however there are differences between LED and laser sources like spot size, spectral width, power output, etc. In this study we wanted to test if light emitting diode therapy (LEDT) can alter muscle performance, fatigue development and biochemical markers for skeletal muscle recovery in an experimental model of biceps humeri muscle contractions. Study Design/Materials and Methods: Ten male professional volleyball players (23.6 [SD +/- 5.6] years old) entered a randomized double-blinded placebo-controlled crossover trial. Active cluster LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW, 30 seconds total irradiation time, 41.7J of total energy irradiated) or an identical placebo LEDT was delivered under double-blinded conditions to the middle of biceps humeri muscle immediately before exercise. All subjects performed voluntary biceps humeri contractions with a workload of 75% of their maximal voluntary contraction force (MVC) until exhaustion. Results: Active LEDT increased the number of biceps humeri contractions by 12.9% (38.60 [SD +/- 9.03] vs. 34.20 [SD +/- 8.68], P = 0.021) and extended the elapsed time to perform contractions by 11.6% (P = 0.036) versus placebo. In addition, post-exercise levels of biochemical markers decreased significantly with active LEDT: Blood Lactate (P = 0.042), Creatine Kinase (P = 0.035), and C-Reative Protein levels (P = 0.030), when compared to placebo LEDT. Conclusion: We conclude that this particular procedure and dose of LEDT immediately before exhaustive biceps humeri contractions, causes a slight delay in the development of skeletal muscle fatigue, decreases post-exercise blood lactate levels and inhibits the release of Creatine Kinase and C-Reative Protein. Lasers Surg. Med. 41:572-577, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: The premise that intrauterine malnutrition plays an important role in the development of cardiovascular and renal diseases implies that these disorders can be programmed during fetal life. Here, we analyzed the hypothesis that supplementation with mixed antioxidant vitamins and essential mineral in early life could prevent later elevation of blood pressure and vascular and renal dysfunction associated with intrauterine malnutrition. Main methods: For this, female Wistar rats were randomly divided into three groups on day 1 of pregnancy: control fed standard chow ad libitum; restricted group fed 50% of the ad libitum intake and a restricted plus micronutrient cocktail group treated daily with a combination of micronutrient (selenium, folate, vitamin C and vitamin E) by oral gavage. Key findings: In adult offspring, renal function and glomerular number were impaired by intrauterine malnutrition. and the prenatal micronutrient treatment did not prevent it. However, increased blood pressure and reduced endothelium-dependent vasodilation were prevented by the micronutrient prenatal treatment. Intrauterine malnutrition also led to reduced NO production associated with increased superoxide generation, and these parameters were fully normalized by this prenatal treatment. Significance: Our current findings indicate that programming alterations during fetal life can be prevented by interventions during the prenatal period, and that disturbance in availability of both antioxidant vitamins and mineral may play a crucial role in determining the occurrence of long-term cardiovascular injury. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to investigate the effect of 830 nm low-level laser therapy (LLLT) on skeletal muscle fatigue. Ten healthy male professional volleyball players entered a crossover randomized double-blinded placebo-controlled trial. Active LLLT (830 nm wavelength, 100 mW output, spot size 0.0028 cm(2), 200 s total irradiation time) or an identical placebo LLLT was delivered to four points on the biceps humeri muscle immediately before exercises. All subjects performed voluntary biceps humeri contractions with a load of 75% of the maximum voluntary contraction (MVC) force until exhaustion. After active LLLT the mean number of repetitions was significantly higher than after placebo irradiation [mean difference 4.5, standard deviation (SD) +/- 6.0, P = 0.042], the blood lactate levels increased after exercises, but there was no significant difference between the treatments. We concluded that 830 nm LLLT can delay the onset of skeletal muscle fatigue in high-intensity exercises, in spite of increased blood lactate levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering the growing importance of the interaction between components of kallikreinkinin and renin-angiotensin systems in physiological and pathological processes, particularly in diabetes mellitus, the aim of the present study was to investigate the effect of enalapril on the reduced response of bradykinin and on the interaction between angiotensin-(1-7) (Ang-(1-7)) and bradykinin (BK), important components of these systems, in an insulin-resistance model of diabetes. For the above purpose, the response of mesenteric arterioles of anesthetized neonatal streptozotocin-induced (n-STZ) diabetic and control rats was evaluated using intravital microscopy. In n-STZ diabetic rats, enalapril treatment restored the reduced response to BK but not the potentiation of BK by Ang-(1-7) present in non-diabetic rats. The restorative effect of enalapril was observed at a dose that did not correct the altered parameters induced by diabetes such as hyperglycernia, glicosuria, insulin resistance but did reduce the high blood pressure levels of n-SZT diabetic rats. There was no difference in mRNA and protein expressions of B1 and B2 kinin receptor subtypes between n-STZ diabetic and control rats. Enalapril treatment increased the B2 kinin receptor expression. From our data, we conclude that in diabetes enalapril corrects the impaired BK response probably by increasing the expression of B2 receptors. The lack of potentiation of BK by Ang-(1-7) is not corrected by this agent. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past 20 y, the hormone melatonin was found to be produced in extrapineal sites, including cells of the immune system. Despite the increasing data regarding the biological effects of melatonin on the regulation of the immune system, the effect of this molecule on T cell survival remains largely unknown. Activation-induced cell death plays a critical role in the maintenance of the homeostasis of the immune system by eliminating self-reactive or chronically stimulated T cells. Because activated T cells not only synthesize melatonin but also respond to it, we investigated whether melatonin could modulate activation-induced cell death. We found that melatonin protects human and murine CD4(+) T cells from apoptosis by inhibiting CD95 ligand mRNA and protein upregulation in response to TCR/CD3 stimulation. This inhibition is a result of the interference with calmodulin/calcineurin activation of NFAT that prevents the translocation of NFAT to the nucleus. Accordingly, melatonin has no effect on T cells transfected with a constitutively active form of NFAT capable of migrating to the nucleus and transactivating target genes in the absence of calcineurin activity. Our results revealed a novel biochemical pathway that regulates the expression of CD95 ligand and potentially other downstream targets of NFAT activation. The Journal of Immunology, 2010, 184: 3487-3494.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prion protein (PrPC), when associated with the secreted form of the stress-inducible protein 1 (STI1), plays an important role in neural survival, neuritogenesis, and memory formation. However, the role of the PrP(C)-STI1 complex in the physiology of neural progenitor/stem cells is unknown. In this article, we observed that neurospheres cultured from fetal forebrain of wild-type (Prnp(+/+)) and PrP(C)-null (Prnp(0/0)) mice were maintained for several passages without the loss of self-renewal or multipotentiality, as assessed by their continued capacity to generate neurons, astrocytes, and oligodendrocytes. The homogeneous expression and colocalization of STI1 and PrP(C) suggest that they may associate and function as a complex in neurosphere-derived stem cells. The formation of neurospheres from Prnp(0/0) mice was reduced significantly when compared with their wild-type counterparts. In addition, blockade of secreted STI1, and its cell surface ligand, PrP(C), with specific antibodies, impaired Prnp(+/+) neurosphere formation without further impairing the formation of Prnp(0/0) neurospheres. Alternatively, neurosphere formation was enhanced by recombinant STI1 application in cells expressing PrP(C) but not in cells from Prnp(0/0) mice. The STI1-PrP(C) interaction was able to stimulate cell proliferation in the neurosphere-forming assay, while no effect on cell survival or the expression of neural markers was observed. These data suggest that the STI1-PrP(C) complex may play a critical role in neural progenitor/stem cells self-renewal via the modulation of cell proliferation, leading to the control of the stemness capacity of these cells during nervous system development. STEM CELLS 2011;29:1126-1136

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic cells (DCs), in peripheral tissues, derive mostly from blood precursors that differentiate into DCs under the influence of the local microenvironment. Monocytes constitute the main known DC precursors in blood and their infiltration into tissues is up-regulated during inflammation. During this process, the local production of mediators, like prostaglandins (PGs), influence significantly DC differentiation and function. In the present paper we show that treatment of blood adherent mononuclear cells with 10 mu M indomethacin, a dose achieved in human therapeutic settings, causes monocytes` progressive death but does not affect DCs viability or cell surface phenotype. This resistance of DCs was observed both for cells differentiated in vitro from blood monocytes and for a population with DCs characteristics already present in blood. This phenomenon could affect the local balance of antigen-presenting cells, influence the induction and pattern of immune responses developed under the treatment with non-steroidal anti-inflammatory drugs and, therefore, deserves further investigation. (C) 2009 Elsevier Inc. All rights reserved.