1000 resultados para Borel- Type summability
Resumo:
The self-assembly of symmetric coil-rod-coil ABA-type triblock copolymer melts is studied by applying self-consistent field lattice techniques in a three-dimensional space. The self-assembled ordered structures differ significantly with the variation of the volume fraction of the rod component, which include lamellar, wave lamellar, gyroid, perforated lamellar, cylindrical, and spherical-like phases. To understand the physical essence of these phases and the regimes of occurrence, we construct the phase diagram, which matches qualitatively with the existing experimental results. Compared with the coil-rod AB diblock copolymer, our results revealed that the interfacial grafting density of the separating rod and coil segments shows important influence on the self-assembly behaviors of symmetric coil-rod-coil ABA triblock copolymer melts. We found that the order-disorder transition point changes from f(rod)=0.5 for AB diblock copolymers to f(rod)=0.6 for ABA triblock copolymers. Our results also show that the spherical-like and cylindrical phases occupy most of the region in the phase diagram, and the lamellar phase is found stable only at the high volume fraction of the rod.
Resumo:
A reactive type nonionic surfactant, monostearic acid monomaleic acid glycerol diester (MMGD) was synthesized in our laboratory. Grafting-copolymerization of linear low density polyethylene ( LLDPE) with MMGD was carried out by using beta ray irradiation in air in a twin-screw extruder. Evidence of the grafting of MMGD as well as its extent was determined by Fourier-transformed infrared (FT-IR) spectroscopy. The effects of monomer concentration, reaction temperature and screw run speed on degree of grafting were studied systematically. The thermal behavior of LLDPE-g-MMGD was investigated by using differential scanning calorimety ( DSC). Compared with neat LLDPE, the crystallization temperature ( Tc) of LLDPE-g-MMGD increased about 3 degrees C, and the melting enthalpy (Delta H-m) decreased with increase of MMGD content. It showed that the grafted MMGD monomer onto LLDPE acted as a nucleating agent. The tensile properties and light transmission of blown films were determined. Comparing with neat LLDPE film, no obvious changes could be found for the tensile strength, elongation at break and right angle tearing strength of LLDPE-g-MMGD film. The wettability is expressed by the water contact angle. With an increasing percentage of MMGD, the contact angles of water on film surface of LLDPE- g-MMGD decrease monotonically.
Resumo:
A series of W-type ferrites with the composition of Ba1-xLaxCo2Fe16O27 (where, x = 0.0, 0.05, 0.10, 0.15, 020 and 0.25) were prepared by solid-state reaction method. The structure transformations of the ferrites were examined by XRD, DTA-TG and XPS, and the microwave-absorbing properties were investigated by evaluating the permeability and permittivity of materials (mu(r), epsilon(r)). The results showed that the phase-transition temperature increased with the addition of La2+ content, and a single-phase was formed at 1250 degrees C at last. Microwave properties were obviously improved as a result of the substitution of La3+ for Ba2+ at the frequency range of 0.5 similar to 18.0 GHz.
Resumo:
Self-assembling of novel biodegradable ABC-type triblock copolymer poly(ethylene glycol)-poly(L-lactide)-poly(L-glutamic acid) (PEG-PLLA-PLGA) is studied. In aqueous media, it self-assembles into a spherical micelle with the hydrophobic PLLA segment in the core and the two hydrophilic segments PEG and PLGA in the shell. With the lengths of PEG and PLLA blocks fixed, the diameter of the micelles depends on the length of the PLGA block and on the volume ratio of H2O/dimethylformamide (DMF) in the media. When the PLGA block is long enough, morphology of the self-assembly is pH-dependent. It assembles into the spherical micelle in aqueous media at pH 4.5 and into the connected rod at or below pH 3.2. The critical micelle concentration (cmc) of the copolymer changes accordingly with decreasing solution pH. Both aggregation states can convert to each other at the proper pH value. This reversibility is ascribed to the dissociation and neutralization of the COOH groups in the LGA residues. When the PLGA block is short compared to the PEG or PLLA block, it assembles only into the spherical micelle at various pH values.
Resumo:
Through layer-by-layer (LBL) assembly technique, iron oxide (Fe3O4) nanoparticles coated by poly (diallyldimethylammonium chloride) (PDDA) and Preyssler-type polyoxometalates (NH4)(14)NaP5W30O110.31H(2)O (P5W30) were alternately deposited on quartz and ITO substrates, and 4-aminobenzoic acid modified glassy carbon electrodes. Thus-prepared multilayer films were characterized by UV-visible spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. It was proved that the multilayer films are uniform and stable. And the electrocatalytic activities of the multilayer films can be fine-tuned by adjusting the assembly conditions in the LBL assembly process, such as the pH of the assembly solution. The multilayer films fabricated from P5W30 solutions dissolved in 0.1 M H2SO4 exhibit high electrocatalytic response and sensitivity toward the reduction of two substrates of important analytical interests, HNO2 and IO3- whereas the films assembled with P5W30 solutions dissolved in 1.0 M H2SO4 show remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). Furthermore, the electrocatalytic properties of the HER of the latter film can be obtained from the former film upon exposure to 1.0 M H2SO4 for several hours.
Resumo:
The La0.85MgxNi4.5Co0.35Al0.15 (0.05less than or equal toxless than or equal to0.35) system compounds have been prepared by are melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La0.85Mg0.25Ni4.5Co0.35Al0.(15) alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at -40degreesC.
Resumo:
Vaterite-type YBO3:Eu3+ crystals with interesting flower and hedgehog fungus-like structures composed of nanosheets were obtained by controlled crystallization of Y2O3 and Eu2O3 in H3BO3 solutions under acidic hydrothermal (HT) conditions. Nanosheets of uniform thicknesses were formed by preferential crystal growth along the (100) crystallographic plane and specific three-dimensional structures were further developed through a homocentric growth mechanism. Optical emission measurements showed that the HT-grown nanosheet crystals exhibited a higher ratio of the emitted red-to-orange light ratio than crystals grown from solid-state reactions. The photoluminescence intensity and emission lifetimes were also studied as a function of the Eu3+ dopant concentration and the HT synthesis temperature. The effect of some additives: a chelating ligand, a surfactant and a polymer, on the YBO3:Eu3+ crystals morphology was also investigated.
Resumo:
Both absolute molecular weight and molecular sizes (radius of gyration and hydrodynamic radius) of a vinyl-type polynorbornene eluting from size-exclusion chromatography columns were determined by combined with a static and dynamic laser light scattering detector. The hydrodynamic radius of polymer fraction eluting from size-exclusion chromatography columns was obtained from dynamic laser light scattering measurements at only a single angle of 900 by introducing a correction factor. According to the scaling relationship between molecular sizes and molecular weight and the ratio between radius of gyration and hydrodynamic radius, the vinyl-type polynorbornene took a random coil conformation in 1,2,4-trichlorobenzene at 150 degreesC.