991 resultados para Androgen Levels
Fluctuating Levels Of Circulating VEGF In A Subset Of Patients As Part Of The Multicentre IVAN Study
Resumo:
The fluorescence of molecules 1-3 is enhanced by factors of up to 67 in the presence of magnesium and calcium ions in neutral water which allows the selective monitoring of magnesium ions under simulated physiological conditions and permits the construction of truth tables with OR logic when these molecules are viewed as ion input-photon output molecuIar devices.
Resumo:
The effects of Cd and Zn on cross-colonization by Paxillus involutus of Scots pine seedlings was examined by using pairs of ectomycorrhizal (ECM) and non-mycorrhizal (NM) seedlings grown in the same vessel. This was done to assess, first, the ability of P. involutus to colonize NM Scots pine seedlings by growth from colonized roots of other Scots pine seedlings in the presence of Cd or Zn, and, second whether ECM colonization of Scots pine by P. involutus provided a competitive advantage over NM seedlings. Ectomycorrhizal colonization of Scots pine was shown to be more sensitive than Scots pine itself to Cd and Zn, but prior colonization did provide a competitive advantage with respect to biomass production. This beneficial effect over NM seedlings was, however, equal in the control, Cd and Zn treatments, and was due simply to growth stimulation in the presence of ECM colonization. Cross-colonization from an ECM to a NM seedling was reduced but not prevented by Cd and Zn. Cd had a more negative effect on cross-colonization than on initial colonization of seedlings, whereas Zn had an equally inhibitory effect on both parameters. These results have important implications for plant establishment on metal-contaminated sites. If cross-colonization between plants is reduced by toxic metals, plant establishment on contaminated sites might be retarded.
Resumo:
PURPOSE: Treatment of prostate cancer with androgen deprivation therapy (ADT) is associated with an increased fat mass, decreased lean mass, increased fatigue and a reduction in quality of life (QoL). The aim of this study was to evaluate the efficacy of a 6-month dietary and physical activity intervention for prostate cancer patients receiving ADT, to help minimise these side effects.
METHODS: Patients (n = 94) were recruited to this study if they were planned to receive ADT for prostate cancer for at least 6 months. Men randomised to the intervention arm received a dietary and exercise intervention, commensurate with UK healthy eating and physical activity recommendations. The primary outcome of interest was body composition; secondary outcomes included fatigue, QoL, functional capacity, stress and dietary change.
RESULTS: The intervention group had a significant (p < 0.001) reduction in weight, body mass index and percentage fat mass compared to the control group at 6 months; the between-group differences were -3.3 kg (95 % confidence interval (95 % CI) -4.5, -2.1), -1.1 kg/m(2) (95 % CI -1.5, -0.7) and -2.1 % (95 % CI -2.8, -1.4), respectively, after adjustment for baseline values. The intervention resulted in improvements in functional capacity (p < 0.001) and dietary intakes but did not significantly impact fatigue, QoL or stress scores at endpoint.
CONCLUSIONS: A 6-month diet and physical activity intervention can minimise the adverse body composition changes associated with ADT.
IMPLICATIONS FOR CANCER SURVIVORS: This study shows that a pragmatic lifestyle intervention is feasible and can have a positive impact on health behaviours and other key outcomes in men with prostate cancer receiving ADT.
Resumo:
In this single centre study of childhood acute lymphoblastic leukaemia (ALL) patients treated on the Medical Research Council UKALL 97/99 protocols, it was determined that minimal residual disease (MRD) detected by real time quantitative polymerase chain reaction (RQ-PCR) and 3-colour flow cytometry (FC) displayed high levels of qualitative concordance when evaluated at multiple time-points during treatment (93.38%), and a combined use of both approaches allowed a multi time-point evaluation of MRD kinetics for 90% (53/59) of the initial cohort. At diagnosis, MRD markers with sensitivity of at least 0.01% were identified by RQ-PCR detection of fusion gene transcripts, IGH/TRG rearrangements, and FC. Using a combined RQ-PCR and FC approach, the evaluation of 367 follow-up BM samples revealed that the detection of MRD >1% at Day 15 (P = 0.04), >0.01% at the end of induction (P = 0.02), >0.01% at the end of consolidation (P = 0.01), >0.01% prior to the first delayed intensification (P = 0.01), and >0.1% prior to the second delayed intensification and continued maintenance (P = 0.001) were all associated with relapse and, based on early time-points (end of induction and consolidation) a significant log-rank trend (P = 0.0091) was noted between survival curves for patients stratified into high, intermediate and low-risk MRD groups.
Resumo:
Microarray technology has recently accelerated the study of the molecular events involved in prostate cancer, offering the prospect of more precise prognosis and new therapeutic strategies. This review summarises current knowledge of the molecular pathology of prostate cancer. The expression and function of numerous genes have been shown to be altered in prostate cancer. Many of these genes are involved in cell cycle regulation, steroid hormone metabolism or regulation of gene expression. The mechanisms by which androgen independence arises are discussed, including cross-activation, gene amplification and point mutations of the androgen receptor. Analysis of changes in the levels of expression of large numbers of genes during prostate cancer progression have provided a better understanding of the basis of the disease, yielding new molecular markers, such as hepsin, with potential use in diagnosis and prognosis.
Resumo:
Wilms' tumor gene 1 (WT1) is overexpressed in the majority (70-90%) of acute leukemias and has been identified as an independent adverse prognostic factor, a convenient minimal residual disease (MRD) marker and potential therapeutic target in acute leukemia. We examined WT1 expression patterns in childhood acute lymphoblastic leukemia (ALL), where its clinical implication remains unclear. Using a real-time quantitative PCR designed according to Europe Against Cancer Program recommendations, we evaluated WT1 expression in 125 consecutively enrolled patients with childhood ALL (106 BCP-ALL, 19 T-ALL) and compared it with physiologic WT1 expression in normal and regenerating bone marrow (BM). In childhood B-cell precursor (BCP)-ALL, we detected a wide range of WT1 levels (5 logs) with a median WT1 expression close to that of normal BM. WT1 expression in childhood T-ALL was significantly higher than in BCP-ALL (P<0.001). Patients with MLL-AF4 translocation showed high WT1 overexpression (P<0.01) compared to patients with other or no chromosomal aberrations. Older children (> or =10 years) expressed higher WT1 levels than children under 10 years of age (P<0.001), while there was no difference in WT1 expression in patients with peripheral blood leukocyte count (WBC) > or =50 x 10(9)/l and lower. Analysis of relapsed cases (14/125) indicated that an abnormal increase or decrease in WT1 expression was associated with a significantly increased risk of relapse (P=0.0006), and this prognostic impact of WT1 was independent of other main risk factors (P=0.0012). In summary, our study suggests that WT1 expression in childhood ALL is very variable and much lower than in AML or adult ALL. WT1, thus, will not be a useful marker for MRD detection in childhood ALL, however, it does represent a potential independent risk factor in childhood ALL. Interestingly, a proportion of childhood ALL patients express WT1 at levels below the normal physiological BM WT1 expression, and this reduced WT1 expression appears to be associated with a higher risk of relapse.
Resumo:
Cytokine secretion and degranulation represent key components of CD8(+) T-cell cytotoxicity. While transcriptional blockade of IFN-γ and inhibition of degranulation by TGF-β are well established, we wondered whether TGF-β could also induce immune-regulatory miRNAs in human CD8(+) T cells. We used miRNA microarrays and high-throughput sequencing in combination with qRT-PCR and found that TGF-β promotes expression of the miR-23a cluster in human CD8(+) T cells. Likewise, TGF-β up-regulated expression of the cluster in CD8(+) T cells from wild-type mice, but not in cells from mice with tissue-specific expression of a dominant-negative TGF-β type II receptor. Reporter gene assays including site mutations confirmed that miR-23a specifically targets the 3'UTR of CD107a/LAMP1 mRNA, whereas the further miRNAs expressed in this cluster-namely, miR-27a and -24-target the 3'UTR of IFN-γ mRNA. Upon modulation of the miR-23a cluster by the respective miRNA antagomirs and mimics, we observed significant changes in IFN-γ expression, but only slight effects on CD107a/LAMP1 expression. Still, overexpression of the cluster attenuated the cytotoxic activity of antigen-specific CD8(+) T cells. These functional data thus reveal that the miR-23a cluster not only is induced by TGF-β, but also exerts a suppressive effect on CD8(+) T-cell effector functions, even in the absence of TGF-β signaling.
Resumo:
The androgen receptor is a key transcription factor contributing to the development of all stages of prostate cancer (PCa). In addition, other transcription factors have been associated with poor prognosis in PCa, amongst which c-Myc (MYC) is a well-established oncogene in many other cancers. We have previously reported that the AR promotes glycolysis and anabolic metabolism; many of these metabolic pathways are also MYC-regulated in other cancers. In this study, we report that in PCa cells de novo purine biosynthesis and the subsequent conversion to XMP is tightly regulated by MYC and independent of AR activity. We characterized two enzymes, PAICS and IMPDH2, within the pathway as PCa biomarkers in tissue samples and report increased efficacy of established anti-androgens in combination with a clinically approved IMPDH inhibitor, mycophenolic acid (MPA). Treatment with MPA led to a significant reduction in cellular guanosine triphosphate (GTP) levels accompanied by nucleolar stress and p53 stabilization. In conclusion, targeting purine biosynthesis provides an opportunity to perturb PCa metabolism and enhance tumour suppressive stress responses.
Resumo:
The unfolded protein response (UPR) is a homeostatic mechanism to maintain endoplasmic reticulum (ER) function. The UPR is activated by various physiological conditions as well as in disease states, such as cancer. As androgens regulate secretion and development of the normal prostate and drive prostate cancer (PCa) growth, they may affect UPR pathways. Here, we show that the canonical UPR pathways are directly and divergently regulated by androgens in PCa cells, through the androgen receptor (AR), which is critical for PCa survival. AR bound to gene regulatory sites and activated the IRE1α branch, but simultaneously inhibited PERK signaling. Inhibition of the IRE1α arm profoundly reduced PCa cell growth in vitro as well as tumor formation in preclinical models of PCa in vivo. Consistently, AR and UPR gene expression were correlated in human PCa, and spliced XBP-1 expression was significantly upregulated in cancer compared with normal prostate. These data establish a genetic switch orchestrated by AR that divergently regulates the UPR pathways and suggest that targeting IRE1α signaling may have therapeutic utility in PCa.
Resumo:
Prostate cancer is the second most common cause of cancer-associated deaths in men, and signaling via a transcription factor called androgen receptor (AR) is an important driver of the disease. Consequently, AR target genes are prominent candidates to be specific for prostate cancer and also important for the survival of the cancer cells. Here we assess the levels of all hexosamine biosynthetic pathway (HBP) enzymes in 15 separate clinical gene expression data sets and identify the last enzyme in the pathway, UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1), to be highly overexpressed in prostate cancer. We analyzed 3261 prostate cancers on a tissue microarray and found that UAP1 staining correlates negatively with Gleason score (P=0.0039) and positively with high AR expression (P<0.0001). Cells with high UAP1 expression have 10-fold increased levels of the HBP end-product, UDP-N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is essential for N-linked glycosylation occurring in the endoplasmic reticulum (ER) and high UAP1 expression associates with resistance against inhibitors of N-linked glycosylation (tunicamycin and 2-deoxyglucose) but not with a general ER stress-inducing agent, the calcium ionophore A23187. Knockdown of UAP1 expression re-sensitized cells towards inhibitors of N-linked glycosylation, as measured by proliferation and activation of ER stress markers. Taken together, we have identified an enzyme, UAP1, which is highly overexpressed in prostate cancer and protects cancer cells from ER stress conferring a growth advantage.
Resumo:
In prostate cancer (PC), the androgen receptor (AR) is a key transcription factor at all disease stages, including the advanced stage of castrate-resistant prostate cancer (CRPC). In the present study, we show that GABPα, an ETS factor that is up-regulated in PC, is an AR-interacting transcription factor. Expression of GABPα enables PC cell lines to acquire some of the molecular and cellular characteristics of CRPC tissues as well as more aggressive growth phenotypes. GABPα has a transcriptional role that dissects the overlapping cistromes of the two most common ETS gene fusions in PC: overlapping significantly with ETV1 but not with ERG target genes. GABPα bound predominantly to gene promoters, regulated the expression of one-third of AR target genes and modulated sensitivity to AR antagonists in hormone responsive and castrate resistant PC models. This study supports a critical role for GABPα in CRPC and reveals potential targets for therapeutic intervention.
Resumo:
Prostate cancer treatment is dominated by strategies to control androgen receptor (AR) activity. AR has an impact on prostate cancer development through the regulation of not only transcription networks but also genomic stability and DNA repair, as manifest in the emergence of gene fusions. Whole-genome maps of AR binding sites and transcript profiling have shown changes in the recruitment and regulatory effect of AR on transcription as prostate cancer progresses. Defining other factors that are involved in this reprogramming of AR function gives various opportunities for cancer detection and therapeutic intervention.