991 resultados para Acceptor moieties


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Ziel der vorliegenden Arbeit war die Synthese und Charakterisierung von donor-funktionalisierten Spiro-Perylencarboximiden, welche für den Einsatz in optoelektronischen Bauelementen wie z.B. organischen Phototransistoren, Feldeffekttransistoren oder Solarzellen vorgesehen sind. Die donorfunktionalisierten Spiro-Perylencarboximide stellen kovalent gebundene Donor-Akzeptor-Verbindungen dar, die unter geeigneter Belichtung einen ladungsgetrennten Zustand bilden können. Die Verbindungen wurden aus unterschiedlichen Spiroamin- und Perylenanhydrid-Edukten synthetisiert, die im Baukastenprinzip zu den entsprechenden Zielverbindungen umgesetzt wurden. Mittels unterschiedlicher Charakterisierungsmethoden (z.B. DSC, TGA, CV, Absorptions- und Fluoreszenzmessungen) wurden die Eigenschaften der neuartigen Zielverbindungen untersucht. Im Rahmen der Arbeit wurden vier neue Spiroamin-Edukte erstmalig synthetisiert und charakterisiert. Sie wurden durch Reduktion aus den bisher noch nicht beschriebenen Nitroverbindungen bzw. mittels Pd-katalysierter Kreuzkupplung (Hartwig-Buchwald-Reaktion) aus einer halogenierten Spiroverbindung erhalten. Als Perylenanhydrid-Edukt wurde erstmals eine perfluorierte Perylenanhydrid-Imid-Verbindung hergestellt. Aus den Spiroamin- und Perylenanhydrid-Edukten wurden insgesamt neun neue, donorfunktionalisierte Spiro-Perylencarboximide synthetisiert. Zusätzlich wurden sechs neuartige Spiro-Perylencarboximide ohne Diphenylamin-Donor hergestellt, die als Vergleichsverbindungen dienten. Die donorfunktionalisierten Spiro-Perylencarboximide besitzen eine Absorption im UV- und sichtbaren Spektralbereich, wobei hohe Extinktionskoeffizienten erreicht werden. Die Verbindungen zeigen in verdünnter Lösung (sowohl in polaren als auch in unpolaren Lösungsmitteln) eine Fluoreszenzquantenausbeute unter 1 %, was auf einen effizienten Ladungstransfer zurückzuführen ist. Alle donorfunktionalisierten Spiro-Perylencarboximide zeigen in den CV-Messungen reversibles Verhalten. Mittels CV-Messungen und optischer Methode konnten die HOMO- und LUMO-Lagen der jeweiligen Molekülhälften berechnet und das Fluoreszenzverhalten der Verbindungen erklärt werden. Ebenso konnten die Auswirkungen von unterschiedlichen Substituenten auf die jeweiligen HOMO-/LUMO-Lagen näher untersucht werden. Die durchgeführten DSC- und TGA-Untersuchungen zeigen hohe morphologische und thermische Stabilität der Verbindungen, wobei Glasübergangstemperaturen > 211 °C, Schmelztemperaturen > 388 °C und Zersetzungstemperaturen > 453 °C gemessen wurden. Diese Werte sind höher als die bisher in der Literatur für ähnliche spiroverknüpfte Verbindungen berichteten. Als besonders interessant haben sich die unsymmetrischen donorfunktionalisierten Spiro-Perylencarboximide herausgestellt. Sie zeigen hohe Löslichkeit in gängigen Lösungsmitteln, sind bis zu einer Molmasse < 1227 g/mol aufdampfbar und bilden stabile, amorphe Schichten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-assembled monolayers (SAMs) on solid surfaces are of great current interest in science and nanotechnology. This thesis describes the preparation of several symmetrically 1,1’-substituted ferrocene derivatives that contain anchoring groups suitable for chemisorption on gold and may give rise to SAMs with electrochemically switchable properties. The binding groups are isocyano (-NC), isothiocyanato (-NCS), phosphanyl (-PPh2), thioether (-SR) and thienyl. In the context of SAM fabrication, isothiocyanates and phosphanes are adsorbate systems which, surprisingly, have remained essentially unexplored. SAMs on gold have been fabricated with the adsorbates from solution and investigated primarily by X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. The results of these analytical investigations are presented and discussed in matters of the film quality and possible binding modes. The quality of self-assembled monolayers fabricated from 1,1’-diisocyanoferrocene and 1,1’-diisothiocyanatoferrocene turned out to be superior to that of films based on the other adsorbate species investigated. Films of those absorbates as well as of dppf afforded well-defined SAMs of good quality. All other films of this study based on sulfur containing anchoring groups exhibit chemical inhomogeneity and low orientational order of the film constituents and therefore failed to give rise to well-defined SAMs. Surface coordination chemistry is naturally related to molecular coordination chemistry. Since all SAMs described in this thesis were prepared on gold (111) surfaces, the ferrocene-based ligands of this study have been investigated in their ability for complexation towards gold(I). The sulfur-based ferrocene ligands [fc(SR)2] failed to give stable gold(I) complexes. In contrast, 1,1’-diisocyanoferrocene (1) proved to be an excellent ligand for the complexation of gold(I). Several complexes were prepared and characterised utilising a series of gold(I) acetylides. These complexes show interesting structural motifs in the solid state, since intramolecular aurophilic interactions lead to a parallel orientation of the isocyano moieties, combined with an antiparallel alignment of neighbouring units. The reaction of 1 with the gold(I) acetylide [Au(C≡C–Fc)]n turned out to be very unusual, since the two chemically equivalent isocyano groups undergo a different reaction. One group shows an ordinary coordination and the other one undergoes an extraordinary 1,1-insertion into the Au-C bond. As a sideline of the research of this thesis several ferrocene derivatives have been tested for their suitability for potential surface reactions. Copper(I) mediated 1,3-dipolar cycloadditions of azidoferrocene derivatives with terminal alkynes appeared very promising in this context, but failed to a certain extent in terms of ‘click’ chemistry, since the formation of the triazoles depended on the strict exclusion of oxygen and moisture and yields were only moderate. Staudinger reactions between dppf and azidoferrocene derivatives were also tested. The nucleophilic additions of secondary amines to 1,1’-diisothiocyanatoferrocene led to the respective thiourea derivatives in quantitative yields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oil price rises more and more, and the world energy consumption is projected to expand by 50 percent from 2005 to 2030. Nowadays intensive research is focused on the development of alternative energies. Among them, there are dye-sensitized nanocrystalline solar cells (DSSCs) “the third generation solar cells”. The latter have gained attention during the last decade and are currently subject of intense research in the framework of renewable energies as a low-cost photovoltaic. At present DSSCs with ruthenium based dyes exhibit highest efficiencies (ca 11%). The objective of the present work is to fabricate, characterize and improve the performance of DSSCs based on metal free dyes as sensitizers, especially on perylene derivatives. The work begins by a general introduction to the photovoltaics and dye-sensitized solar cells, such as the operating principles and the characteristics of the DSSCs. Chapter 2 and 3 discuss the state of the art of sensitizers used in DSSCs, present the compounds used as sensitizer in the present work and illustrate practical issues of experimental techniques and device preparation. A comparative study of electrolyte-DSSCs based on P1, P4, P7, P8, P9, and P10 are presented in chapter 4. Experimental results show that the dye structure plays a crucial role in the performance of the devices. The dye based on the spiro-concept (bipolar spiro compound) exhibited a higher efficiency than the non-spiro compounds. The presence of tert-butylpyridine as additive in the electrolyte was found to increase the open circuit voltage and simultaneously decrease the efficiency. The presence of lithium ions in the electrolyte increases both output current and the efficiency. The sensitivity of the dye to cations contained in the electrolyte was investigated in the chapter 5. FT-IR and UV-Vis were used to investigate the in-situ coordination of the cation to the adsorbed dye in the working devices. The open-circuit voltage was found to depend on the number of coordination sites in the dye. P1 with most coordination sites has shown the lowest potential drop, opposite to P7, which is less sensitive to cations in the working cells. A strategy to improve the dye adsorption onto the TiO2 surface, and thus the light harvesting efficiency of the photoanode by UV treatment, is presented in chapter 6. The treatment of the TiO2 film with UV light generates hydroxyl groups and renders the TiO2 surface more and more hydrophilic. The treated TiO2 surface reacts readily with the acid anhydride group of the dye that acts as an anchoring group and improves the dye adsorption. The short-circuit current density and the efficiency of the electrolyte-based dye cells was considerably improved by the UV treatment of the TiO2 film. Solid-state dye-sensitized solar cells (SSDs) based on spiro-MeOTAD (used as hole transport material) are studied in chapter 7. The efficiency of SSDs was globally found to be lower than that of electrolyte-based solar cells. That was due to poor pore filling of the dye-loaded TiO2 film by the spin-coated spiro-MeOTAD and to the significantly slower charge transport in the spiro-MeOTAD compared to the electrolyte redox mediator. However, the presence of the donor moieties in P1 that are structurally similar to spiro-MeOTAD was found to improve the wettability of the P1-loaded TiO2 film. As a consequence the performance of the P1-based solid-state cells is better compared to the cells based on non-spiro compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

English: The present thesis describes the synthesis of 1,1’-ferrocendiyl-based pyridylphosphine ligands, the exploration of their fundamental coordination chemistry and preliminary experiments with selected complexes aimed at potential applications. One main aspect is the synthesis of the bidentate ferrocene-based pyridylphosphine ligands 1-(Pyrid-2-yl)-1’-diphenylphosphinoferrocene, 1-(Pyrid-3-yl)-1’-diphenylphosphinoferrocene and 1-[(Pyrid-2-yl)methyl]-1’-diphenylphosphinoferrocene. A specific feature of these ligands is the ball-bearing like flexibility of the ferrocenebased backbone. An additional flexibility element is the rotation around the C–C single bonds. Consequently, the donor atoms can realise a wide range of positions with respect to each other and are therefore able to adapt to the coordination requirements of different metal centres. The flexibility of the ligand also plays a role in another key aspect of this work, which concerns the coordination mode, i. e. bridging vs. chelating. In addition to the flexibility, also the position of the donor atoms to each other is important. This is largely affected by the position of the pyridyl nitrogen (pyrid-2-yl vs. pyrid-3-yl) and the methylen group in 1-[(Pyrid-2-yl)methyl]-1’-diphenylphosphinoferrocene. Another interesting point is the combination of a soft phosphorus donor atom with a harder nitrogen donor atom, according to the HSAB principle. This combination generates a unique binding profile, since the pi-acceptor character of the P site is able to stabilise a metal centre in a low oxidation state, while the nitrogen sigma-donor ability can make the metal more susceptible to oxidative addition reactions. A P,N-donor combination can afford hemilabile binding profiles, which would be ideal for catalysis. Beyond 1,2-substituted ferrocene derivatives, which are quite successful in catalytic applications, 1,1’-derivatives are rather underrepresented. While a low-yield synthetic pathway to 1-(Pyrid-2-yl)-1’-diphenylphosphinoferrocene was already described in the literature [I. R. Butler, Organometallics 1992, 11, 74.], it was possible to find a new, improved and simplified synthetic pathway. Both other ligands were unknown prior to this work. Satisfactory results in the synthesis of 1-(Pyrid-3-yl)-1’-diphenylphosphinoferrocene could be achieved by working in analogy to the new synthetic procedure for 1-(Pyrid-2-yl)-1’-diphenylphosphinoferrocene. The synthesis of 1-[(Pyrid-2-yl)methyl]-1’-diphenylphosphinoferrocene has been handled by the group of Prof. Petr Stepnicka from Charles University, Prague, Czech Republic. The synthesis of tridentate ligands with an analogous heterodentate arrangement, was investigated briefly as a sideline of this study. The major part of this thesis deals with the fundamental coordination chemistry towards transition metals of the groups 10, 11 and 12. Due to the well-established catalytic properties of analogous palladium complexes, the coordination chemistry towards palladium (group 10) is of particular interest. The metals zinc and cadmium (group 12) are also of substantial importance because they are redox-inert in their divalent state. This is relevant in view of electrochemical investigations concerning the utilisation of the ligands as molecular redox sensors. Also mercury and the monovalent metals silver and gold (group 11) are included because of their rich coordination chemistry. It is essential to answer questions concerning aspects of the ligands’ coordination mode bearing in mind the HSAB principle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes several important advancements in the understanding of the assembly of outer membrane proteins of Gram-negative bacteria like Escherichia coli. A first study was performed to identify binding regions in the trimeric chaperone Skp for outer membrane proteins. Skp is known to facilitate the passage of unfolded outer membrane proteins (OMPs) through the periplasm to the outer membrane (OM). A gene construct named “synthetic chaperone protein (scp)” gene was used to express a fusion protein (Scp) into the cytoplasm of E. coli. The scp gene was used as a template to design mutants of Scp suitable for structural and functional studies using site-directed spectroscopy. Fluorescence resonance energy transfer (FRET) was used to identify distances in Skp-OmpA complexes that separate regions in Scp and in outer membrane protein A (OmpA) from E. coli. For this study, single cysteine (Cys) mutants and single Cys - single tryptophan (Trp) double mutants of Scp were prepared. For FRET experiments, the cysteines were labeled with the tryptophan fluorescence energy acceptor IAEDANS. Single Trp mutants of OmpA were used as fluorescence energy donors. In the second part of this thesis, the function of BamD and the structure of BamD-Scp complexes were examined. BamD is an essential component of the β-barrel assembly machinery (BAM) complex of the OM of Gram-negative bacteria. Fluorescence spectroscopy was used to probe the interactions of BamD with lipid membranes and to investigate the interactions of BamD with possible partner proteins from the periplasm and from the OM. A range of single cysteine (Cys) and single tryptophan (Trp) mutants of BamD were prepared. A very important conclusion from the extensive FRET study is that the essential lipoprotein BamD interacts and binds to the periplasmic chaperone Skp. BamD contains tetratrico peptide repeat (TPR) motifs that are suggested to serve as docking sites for periplasmic chaperones such as Skp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the effect of the epitaxial structure and the acceptor doping profile on the efficiency droop in InGaN/GaN LEDs by the physics based simulation of experimental internal quantum efficiency (IQE) characteristics. The device geometry is an integral part of our simulation approach. We demonstrate that even for single quantum well LEDs the droop depends critically on the acceptor doping profile. The Auger recombination was found to increase stronger than with the third power of the carrier density and has been found to dominate the droop in the roll over zone of the IQE. The fitted Auger coefficients are in the range of the values predicted by atomistic simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While protein microarray technology has been successful in demonstrating its usefulness for large scale high-throughput proteome profiling, performance of antibody/antigen microarrays has been only moderately productive. Immobilization of either the capture antibodies or the protein samples on solid supports has severe drawbacks. Denaturation of the immobilized proteins as well as inconsistent orientation of antibodies/ligands on the arrays can lead to erroneous results. This has prompted a number of studies to address these challenges by immobilizing proteins on biocompatible surfaces, which has met with limited success. Our strategy relates to a multiplexed, sensitive and high-throughput method for the screening quantification of intracellular signalling proteins from a complex mixture of proteins. Each signalling protein to be monitored has its capture moiety linked to a specific oligo ‘tag’. The array involves the oligonucleotide hybridization-directed localization and identification of different signalling proteins simultaneously, in a rapid and easy manner. Antibodies have been used as the capture moieties for specific identification of each signaling protein. The method involves covalently partnering each antibody/protein molecule with a unique DNA or DNA derivatives oligonucleotide tag that directs the antibody to a unique site on the microarray due to specific hybridization with a complementary tag-probe on the array. Particular surface modifications and optimal conditions allowed high signal to noise ratio which is essential to the success of this approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are two principal chemical concepts that are important for studying the natural environment. The first one is thermodynamics, which describes whether a system is at equilibrium or can spontaneously change by chemical reactions. The second main concept is how fast chemical reactions (kinetics or rate of chemical change) take place whenever they start. In this work we examine a natural system in which both thermodynamics and kinetic factors are important in determining the abundance of NH+4 , NO−2 and NO−3 in superficial waters. Samples were collected in the Arno Basin (Tuscany, Italy), a system in which natural and antrophic effects both contribute to highly modify the chemical composition of water. Thermodynamical modelling based on the reduction-oxidation reactions involving the passage NH+4 -> NO−2 -> NO−3 in equilibrium conditions has allowed to determine the Eh redox potential values able to characterise the state of each sample and, consequently, of the fluid environment from which it was drawn. Just as pH expresses the concentration of H+ in solution, redox potential is used to express the tendency of an environment to receive or supply electrons. In this context, oxic environments, as those of river systems, are said to have a high redox potential because O2 is available as an electron acceptor. Principles of thermodynamics and chemical kinetics allow to obtain a model that often does not completely describe the reality of natural systems. Chemical reactions may indeed fail to achieve equilibrium because the products escape from the site of the rection or because reactions involving the trasformation are very slow, so that non-equilibrium conditions exist for long periods. Moreover, reaction rates can be sensitive to poorly understood catalytic effects or to surface effects, while variables as concentration (a large number of chemical species can coexist and interact concurrently), temperature and pressure can have large gradients in natural systems. By taking into account this, data of 91 water samples have been modelled by using statistical methodologies for compositional data. The application of log–contrast analysis has allowed to obtain statistical parameters to be correlated with the calculated Eh values. In this way, natural conditions in which chemical equilibrium is hypothesised, as well as underlying fast reactions, are compared with those described by a stochastic approach

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El marcaje de proteínas con ubiquitina, conocido como ubiquitinación, cumple diferentes funciones que incluyen la regulación de varios procesos celulares, tales como: la degradación de proteínas por medio del proteosoma, la reparación del ADN, la señalización mediada por receptores de membrana, y la endocitosis, entre otras (1). Las moléculas de ubiquitina pueden ser removidas de sus sustratos gracias a la acción de un gran grupo de proteasas, llamadas enzimas deubiquitinizantes (DUBs) (2). Las DUBs son esenciales para la manutención de la homeostasis de la ubiquitina y para la regulación del estado de ubiquitinación de diferentes sustratos. El gran número y la diversidad de DUBs descritas refleja tanto su especificidad como su utilización para regular un amplio espectro de sustratos y vías celulares. Aunque muchas DUBs han sido estudiadas a profundidad, actualmente se desconocen los sustratos y las funciones biológicas de la mayoría de ellas. En este trabajo se investigaron las funciones de las DUBs: USP19, USP4 y UCH-L1. Utilizando varias técnicas de biología molecular y celular se encontró que: i) USP19 es regulada por las ubiquitin ligasas SIAH1 y SIAH2 ii) USP19 es importante para regular HIF-1α, un factor de transcripción clave en la respuesta celular a hipoxia, iii) USP4 interactúa con el proteosoma, iv) La quimera mCherry-UCH-L1 reproduce parcialmente los fenotipos que nuestro grupo ha descrito previamente al usar otros constructos de la misma enzima, y v) UCH-L1 promueve la internalización de la bacteria Yersinia pseudotuberculosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electronic coupling Vda is one of the key parameters that determine the rate of charge transfer through DNA. While there have been several computational studies of Vda for hole transfer, estimates of electronic couplings for excess electron transfer (ET) in DNA remain unavailable. In the paper, an efficient strategy is established for calculating the ET matrix elements between base pairs in a π stack. Two approaches are considered. First, we employ the diabatic-state (DS) method in which donor and acceptor are represented with radical anions of the canonical base pairs adenine-thymine (AT) and guanine-cytosine (GC). In this approach, similar values of Vda are obtained with the standard 6-31 G* and extended 6-31++ G* basis sets. Second, the electronic couplings are derived from lowest unoccupied molecular orbitals (LUMOs) of neutral systems by using the generalized Mulliken-Hush or fragment charge methods. Because the radical-anion states of AT and GC are well reproduced by LUMOs of the neutral base pairs calculated without diffuse functions, the estimated values of Vda are in good agreement with the couplings obtained for radical-anion states using the DS method. However, when the calculation of a neutral stack is carried out with diffuse functions, LUMOs of the system exhibit the dipole-bound character and cannot be used for estimating electronic couplings. Our calculations suggest that the ET matrix elements Vda for models containing intrastrand thymine and cytosine bases are essentially larger than the couplings in complexes with interstrand pyrimidine bases. The matrix elements for excess electron transfer are found to be considerably smaller than the corresponding values for hole transfer and to be very responsive to structural changes in a DNA stack

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The [2+2+2] cycloaddition reaction involves the formation of three carbon-carbon bonds in one single step using alkynes, alkenes, nitriles, carbonyls and other unsaturated reagents as reactants. This is one of the most elegant methods for the construction of polycyclic aromatic compounds and heteroaromatic, which have important academic and industrial uses. The thesis is divided into ten chapters including six related publications. The first study based on the Wilkinson’s catalyst, RhCl(PPh3)3, compares the reaction mechanism of the [2+2+2] cycloaddition process of acetylene with the cycloaddition obtained for the model of the complex, RhCl(PH3)3. In an attempt to reduce computational costs in DFT studies, this research project aimed to substitute PPh3 ligands for PH3, despite the electronic and steric effects produced by PPh3 ligands being significantly different to those created by PH3 ones. In this first study, detailed theoretical calculations were performed to determine the reaction mechanism of the two complexes. Despite some differences being detected, it was found that modelling PPh3 by PH3 in the catalyst helps to reduce the computational cost significantly while at the same time providing qualitatively acceptable results. Taking into account the results obtained in this earlier study, the model of the Wilkinson’s catalyst, RhCl(PH3)3, was applied to study different [2+2+2] cycloaddition reactions with unsaturated systems conducted in the laboratory. Our research group found that in the case of totally closed systems, specifically 15- and 25-membered azamacrocycles can afford benzenic compounds, except in the case of 20-membered azamacrocycle (20-MAA) which was inactive with the Wilkinson’s catalyst. In this study, theoretical calculations allowed to determine the origin of the different reactivity of the 20-MAA, where it was found that the activation barrier of the oxidative addition of two alkynes is higher than those obtained for the 15- and 25-membered macrocycles. This barrier was attributed primarily to the interaction energy, which corresponds to the energy that is released when the two deformed reagents interact in the transition state. The main factor that helped to provide an explanation to the different reactivity observed was that the 20-MAA had a more stable and delocalized HOMO orbital in the oxidative addition step. Moreover, we observed that the formation of a strained ten-membered ring during the cycloaddition of 20-MAA presents significant steric hindrance. Furthermore, in Chapter 5, an electrochemical study is presented in collaboration with Prof. Anny Jutand from Paris. This work allowed studying the main steps of the catalytic cycle of the [2+2+2] cycloaddition reaction between diynes with a monoalkyne. First kinetic data were obtained of the [2+2+2] cycloaddition process catalyzed by the Wilkinson’s catalyst, where it was observed that the rate-determining step of the reaction can change depending on the structure of the starting reagents. In the case of the [2+2+2] cycloaddition reaction involving two alkynes and one alkene in the same molecule (enediynes), it is well known that the oxidative coupling may occur between two alkynes giving the corresponding metallacyclopentadiene, or between one alkyne and the alkene affording the metallacyclopentene complex. Wilkinson’s model was used in DFT calculations to analyze the different factors that may influence in the reaction mechanism. Here it was observed that the cyclic enediynes always prefer the oxidative coupling between two alkynes moieties, while the acyclic cases have different preferences depending on the linker and the substituents used in the alkynes. Moreover, the Wilkinson’s model was used to explain the experimental results achieved in Chapter 7 where the [2+2+2] cycloaddition reaction of enediynes is studied varying the position of the double bond in the starting reagent. It was observed that enediynes type yne-ene-yne preferred the standard [2+2+2] cycloaddition reaction, while enediynes type yne-yne-ene suffered β-hydride elimination followed a reductive elimination of Wilkinson’s catalyst giving cyclohexadiene compounds, which are isomers from those that would be obtained through standard [2+2+2] cycloaddition reactions. Finally, the last chapter of this thesis is based on the use of DFT calculations to determine the reaction mechanism when the macrocycles are treated with transition metals that are inactive to the [2+2+2] cycloaddition reaction, but which are thermally active leading to new polycyclic compounds. Thus, a domino process was described combining an ene reaction and a Diels-Alder cycloaddition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Des del seu descobriment, a la molècula C60 se li coneixen una varietat de derivats segons el tipus de funcionalització amb propietats fisicoquímiques específiques de gran interès científic. Una sel·lecció de derivats corresponents a addicions simple o múltiple al C60 s'ha considerat en aquest treball d'investigació. L'estudi a nivell de química computacional de diversos tipus d'addició al C60 s'han portat a terme per tal de poder donar resposta a aspectes que experimentalment no s'entenen o són poc clars. Els sistemes estudiats en referència a l'addició simple al C60 han estat en primer lloc els monoiminoful·lerens, C60NR, (de les dues vies proposades per la seva síntesi, anàlisis cinètic i termodinàmic han ajudat a explicar els mecanismes de formació i justificar l'addició a enllaços tipus [5,6]), i en segon lloc els metanoful·lerens i els hidroful·lerens substituits, C60CHR i C60HR, (raons geomètriques, electròniques, energètiques i magnètiques justifiquen el diferent caràcter àcid ente ambdós derivats tenint en compte una sèrie de substituents R amb diferent caràcter electrònic donor/acceptor). Els fluoroful·lerens, C60Fn, i els epoxid ful·lerens, C60On, (anàlisi sistemàtic dels seus patrons d'addició en base a poder justificar la força que els governa han aportat dades complementàries a les poques que existeixen experimentalment al respecte).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El present treball es centra en l'estudi a diferents nivells dels carotenoides de les espècies marrons de Bacteris Verds del Sofre (GSB, de l'anglès Green Sulfur Bacteria). L'objectiu global ha estat el d'esbrinar quina és la funció d'aquests pigments dins l'aparell fotosintètic d'aquests microorganismes i aprofundir en el coneixement de la seva estructura i interaccions amb els altres pigments de l'aparell fotosintètic. En primer lloc es va dissenyar un nou mètode de cromatografia líquida d'alta resolució (HPLC) per analitzar de manera més ràpida i precisa els carotenoides de diferents soques de GSB (Capítol 3). Aquest mètode es basa en una purificació prèvia dels extractes pigmentaris amb columnes d'alúmina per eliminar les bacterioclorofil·les (BCls). Això va permetre analitzar amb una elevada resolució i en tan sols 45 min de carrera cromatogràfica els diferents carotenoides i els seus precursors, així com les configuracions trans i cis dels seus isòmers. El segon mètode utilitzat va consistir en una modificació del mètode de Borrego i Garcia-Gil (1994) i va permetre la separació precisa de tot tipus de pigments, procedents tant de cultius purs com de mostres de caràcter complex. Un exemple concret foren uns paleosediments de la zona lacustre de Banyoles. En aquests sediments (0,7-1,5 milions d'anys d'antiguitat) es van detectar, entre d'altres pigments, carotenoides específics de les espècies marrons de GSB, la qual cosa va permetre confirmar la presència d'aquests bacteris a la zona lacustre de Banyoles ja des del Pleistocè inferior. En aquest primer capítol també es van analitzar els carotenoides de Chlorobium (Chl.) phaeobacteroides CL1401 mitjançant cromatografia líquida acoblada a espectrometria de masses (LC-MS/MS), amb l'objectiu de confirmar la seva identificació i el seu pes molecular. A més, també es va avaluar l'efecte de la temperatura, la llum i diferents agents oxidants i reductors en la composició quantitativa i qualitativa dels carotenoides i les BCls d'aquesta espècie. Això va permetre confirmar el caràcter fotosensible de les BCls i que els isòmers trans/cis dels diferents carotenoides no són artefactes produïts durant la manipulació de les mostres, sinó que són constitutius de l'aparell fotosintètic d'aquests microorganismes. El Capítol 4 inclou els experiments de fisiologia duts a terme amb algunes espècies de GSB, a partir dels quals es va intentar esbrinar la dinàmica de síntesi dels diferents pigments de l'aparell fotosintètic (BCl antena, BCl a i carotenoides) durant el creixement d'aquestes espècies. Aquestes investigacions van permetre monitoritzar també els canvis en el nombre de centres de reacció (CR) durant el procés d'adaptació lumínica. La determinació experimental del nombre de CR es va realitzar a partir de la quantificació de la BCl663, l'acceptor primari en la cadena de transport d'electrons dels GSB. L'estimació del nombre de CR/clorosoma es va realitzar tant a partir de dades estequiomètriques i biomètriques presents a la bibliografia, com a partir de les dades experimentals obtingudes en el present treball. El bon ajust obtingut entre les diferents estimacions va donar solidesa al valor estequiomètric calculat, que fou, com a promig, d'uns 70 CR per clorosoma. En aquest capítol de fisiologia també es van estudiar les variacions en les relacions trans/cis pels principals carotenoides de les espècies marrons de GSB. Aquestes es van determinar a partir de cultius purs de laboratori i de poblacions naturals de GSB. Pel que fa als valors trobats en cultius de laboratori no es van observar diferències destacades entre el valor calculat a alta intensitat de llum i el calculat a baixa intensitat, essent en ambdós casos proper a 2. En els clorosomes aïllats de diferents soques marrons aquest quocient prengué un valor similar tant pels isòmers de l'isorenieratè (Isr) com pels del -isorenieratè (-Isr). En poblacions naturals de Chl. phaeobacteroides aquesta relació va ser també de 2 isòmers trans per cada isòmer cis, mantenint-se constant tant en fondària com al llarg del temps. Finalment, en el Capítol 5 es presenta un marcador molecular que permet la identificació específica d'espècies marrons de GSB. Malgrat que inicialment aquest marcador fou dissenyat a partir d'un gen implicat en la síntesi de carotenoides (crtY, el qual codifica per a una licopè ciclasa) la seqüència final a partir de la qual s'han aconseguit els encebadors selectius està relacionada amb la família de proteïnes de les Policètid-ceto-sintases (PKT). Tot i així, l'eina dissenyada pot ser de gran utilitat per a la discriminació d'espècies marrons de GSB respecte les verdes en poblacions mixtes com les que es troben en ambients naturals i obre la porta a futurs experiments d'ecologia microbiana utilitzant tècniques com la PCR en temps real, que permetria la monitorització selectiva de les poblacions d'espècies marrons de GSB en ecosistemes naturals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many currently available drugs show unfavourable physicochemical properties for delivery into or across the skin and temporary chemical modulation of the penetrant is one option to achieve improved delivery properties. Pro-drugs are chemical derivatives of an active drug which is covalently bonded to an inactive pro-moiety in order to overcome pharmaceutical and pharmacokinetic barriers. A pro-drug relies upon conversion within the body to release the parent active drug (and pro-moiety) to elicit its pharmacological effect. The main drawback of this approach is that the pro-moiety is essentially an unwanted ballast which, when released, can lead to adverse effects. The term ‘co-drug’ refers to two or more therapeutic compounds active against the same disease bonded via a covalent chemical linkage and it is this approach which is reviewed for the first time in the current article. For topically applied co-drugs, each moiety is liberated in situ, either chemically or enzymatically, once the stratum corneum barrier has been overcome by the co-drug. Advantages include synergistic modulation of the disease process, enhancement of drug delivery and pharmacokinetic properties and the potential to enhance stability by masking of labile functional groups. The amount of published work on co-drugs is limited but the available data suggest the co-drug concept could provide a significant therapeutic improvement in dermatological diseases. However, the applicability of the co-drug approach is subject to strict limitations pertaining mainly to the availability of compatible moieties and physicochemical properties of the overall molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preface. Iron is considered to be a minor element employed, in a variety of forms, by nearly all living organisms. In some cases, it is utilised in large quantities, for instance for the formation of magnetosomes within magnetotactic bacteria or during use of iron as a respiratory donor or acceptor by iron oxidising or reducing bacteria. However, in most cases the role of iron is restricted to its use as a cofactor or prosthetic group assisting the biological activity of many different types of protein. The key metabolic processes that are dependent on iron as a cofactor are numerous; they include respiration, light harvesting, nitrogen fixation, the Krebs cycle, redox stress resistance, amino acid synthesis and oxygen transport. Indeed, it is clear that Life in its current form would be impossible in the absence of iron. One of the main reasons for the reliance of Life upon this metal is the ability of iron to exist in multiple redox states, in particular the relatively stable ferrous (Fe2+) and ferric (Fe3+) forms. The availability of these stable oxidation states allows iron to engage in redox reactions over a wide range of midpoint potentials, depending on the coordination environment, making it an extremely adaptable mediator of electron exchange processes. Iron is also one of the most common elements within the Earth’s crust (5% abundance) and thus is considered to have been readily available when Life evolved on our early, anaerobic planet. However, as oxygen accumulated (the ‘Great oxidation event’) within the atmosphere some 2.4 billion years ago, and as the oceans became less acidic, the iron within primordial oceans was converted from its soluble reduced form to its weakly-soluble oxidised ferric form, which precipitated (~1.8 billion years ago) to form the ‘banded iron formations’ (BIFs) observed today in Precambrian sedimentary rocks around the world. These BIFs provide a geological record marking a transition point away from the ancient anaerobic world towards modern aerobic Earth. They also indicate a period over which the bio-availability of iron shifted from abundance to limitation, a condition that extends to the modern day. Thus, it is considered likely that the vast majority of extant organisms face the common problem of securing sufficient iron from their environment – a problem that Life on Earth has had to cope with for some 2 billion years. This struggle for iron is exemplified by the competition for this metal amongst co-habiting microorganisms who resort to stealing (pirating) each others iron supplies! The reliance of micro-organisms upon iron can be disadvantageous to them, and to our innate immune system it represents a chink in the microbial armour, offering an opportunity that can be exploited to ward off pathogenic invaders. In order to infect body tissues and cause disease, pathogens must secure all their iron from the host. To fight such infections, the host specifically withdraws available iron through the action of various iron depleting processes (e.g. the release of lactoferrin and lipocalin-2) – this represents an important strategy in our defence against disease. However, pathogens are frequently able to deploy iron acquisition systems that target host iron sources such as transferrin, lactoferrin and hemoproteins, and thus counteract the iron-withdrawal approaches of the host. Inactivation of such host-targeting iron-uptake systems often attenuates the pathogenicity of the invading microbe, illustrating the importance of ‘the battle for iron’ in the infection process. The role of iron sequestration systems in facilitating microbial infections has been a major driving force in research aimed at unravelling the complexities of microbial iron transport processes. But also, the intricacy of such systems offers a challenge that stimulates the curiosity. One such challenge is to understand how balanced levels of free iron within the cytosol are achieved in a way that avoids toxicity whilst providing sufficient levels for metabolic purposes – this is a requirement that all organisms have to meet. Although the systems involved in achieving this balance can be highly variable amongst different microorganisms, the overall strategy is common. On a coarse level, the homeostatic control of cellular iron is maintained through strict control of the uptake, storage and utilisation of available iron, and is co-ordinated by integrated iron-regulatory networks. However, much yet remains to be discovered concerning the fine details of these different iron regulatory processes. As already indicated, perhaps the most difficult task in maintaining iron homeostasis is simply the procurement of sufficient iron from external sources. The importance of this problem is demonstrated by the plethora of distinct iron transporters often found within a single bacterium, each targeting different forms (complex or redox state) of iron or a different environmental condition. Thus, microbes devote considerable cellular resource to securing iron from their surroundings, reflecting how successful acquisition of iron can be crucial in the competition for survival. The aim of this book is provide the reader with an overview of iron transport processes within a range of microorganisms and to provide an indication of how microbial iron levels are controlled. This aim is promoted through the inclusion of expert reviews on several well studied examples that illustrate the current state of play concerning our comprehension of how iron is translocated into the bacterial (or fungal) cell and how iron homeostasis is controlled within microbes. The first two chapters (1-2) consider the general properties of microbial iron-chelating compounds (known as ‘siderophores’), and the mechanisms used by bacteria to acquire haem and utilise it as an iron source. The following twelve chapters (3-14) focus on specific types of microorganism that are of key interest, covering both an array of pathogens for humans, animals and plants (e.g. species of Bordetella, Shigella, , Erwinia, Vibrio, Aeromonas, Francisella, Campylobacter and Staphylococci, and EHEC) as well as a number of prominent non-pathogens (e.g. the rhizobia, E. coli K-12, Bacteroides spp., cyanobacteria, Bacillus spp. and yeasts). The chapters relay the common themes in microbial iron uptake approaches (e.g. the use of siderophores, TonB-dependent transporters, and ABC transport systems), but also highlight many distinctions (such as use of different types iron regulator and the impact of the presence/absence of a cell wall) in the strategies employed. We hope that those both within and outside the field will find this book useful, stimulating and interesting. We intend that it will provide a source for reference that will assist relevant researchers and provide an entry point for those initiating their studies within this subject. Finally, it is important that we acknowledge and thank wholeheartedly the many contributors who have provided the 14 excellent chapters from which this book is composed. Without their considerable efforts, this book, and the understanding that it relays, would not have been possible. Simon C Andrews and Pierre Cornelis