978 resultados para 3D reconstruction accuracy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a processing methodology that allows crosshole ERT (electrical resistivity tomography) monitoring data to be used to derive temporal fluctuations of groundwater electrical resistivity and thereby characterize the dynamics of groundwater in a gravel aquifer as it is infiltrated by river water. Temporal variations of the raw ERT apparent-resistivity data were mainly sensitive to the resistivity (salinity), temperature and height of the groundwater, with the relative contributions of these effects depending on the time and the electrode configuration. To resolve the changes in groundwater resistivity, we first expressed fluctuations of temperature-detrended apparent-resistivity data as linear superpositions of (i) time series of riverwater-resistivity variations convolved with suitable filter functions and (ii) linear and quadratic representations of river-water-height variations multiplied by appropriate sensitivity factors; river-water height was determined to be a reliable proxy for groundwater height. Individual filter functions and sensitivity factors were obtained for each electrode configuration via deconvolution using a one month calibration period and then the predicted contributions related to changes in water height were removed prior to inversion of the temperature-detrended apparent-resistivity data. Applications of the filter functions and sensitivity factors accurately predicted the apparent-resistivity variations (the correlation coefficient was 0.98). Furthermore, the filtered ERT monitoring data and resultant time-lapse resistivity models correlated closely with independently measured groundwater electrical resistivity monitoring data and only weakly with the groundwater-height fluctuations. The inversion results based on the filtered ERT data also showed significantly less inversion artefacts than the raw data inversions. We observed resistivity increases of up to 10% and the arrival time peaks in the time-lapse resistivity models matched those in the groundwater resistivity monitoring data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Although the coronary artery vessel wall can be imaged non-invasively using magnetic resonance imaging (MRI), the in vivo reproducibility of wall thickness measures has not been previously investigated. Using a refined magnetization preparation scheme, we sought to assess the reproducibility of three-dimensional (3D) free-breathing black-blood coronary MRI in vivo. METHODS AND RESULTS: MRI vessel wall scans parallel to the right coronary artery (RCA) were obtained in 18 healthy individuals (age range 25-43, six women), with no known history of coronary artery disease, using a 3D dual-inversion navigator-gated black-blood spiral imaging sequence. Vessel wall scans were repeated 1 month later in eight subjects. The visible vessel wall segment and the wall thickness were quantitatively assessed using a semi-automatic tool and the intra-observer, inter-observer, and inter-scan reproducibilities were determined. The average imaged length of the RCA vessel wall was 44.5+/-7 mm. The average wall thickness was 1.6+/-0.2 mm. There was a highly significant intra-observer (r=0.97), inter-observer (r=0.94), and inter-scan (r=0.90) correlation for wall thickness (all P<0.001). There was also a significant agreement for intra-observer, inter-observer, and inter-scan measurements on Bland-Altman analysis. The intra-class correlation coefficients for intra-observer (r=0.97), inter-observer (r=0.92), and inter-scan (r=0.86) analyses were also excellent. CONCLUSION: The use of black-blood free-breathing 3D MRI in conjunction with semi-automated analysis software allows for reproducible measurements of right coronary arterial vessel-wall thickness. This technique may be well-suited for non-invasive longitudinal studies of coronary atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the cause of recurrent pathologic instability after anterior cruciate ligament (ACL) surgery and the effectiveness of revision reconstruction using a quadriceps tendon autograft using a 2-incision technique. TYPE OF STUDY: Retrospective follow-up study. METHODS: Between 1999 and 2001, 31 patients underwent ACL revision reconstruction because of recurrent pathologic instability during sports or daily activities. Twenty-eight patients were reviewed after a mean follow-up of 4.2 years (range, 3.3 to 5.6 years). The mean age at revision surgery was 27 years (range, 18 to 41 years). The average time from primary procedure to revision surgery was 26 months (range, 9 to 45 months). A clinical, functional, and radiographic evaluation was performed. Also magnetic resonance imaging (MRI) or computed tomography (CT) scanning was performed. The International Knee Documentation Committee (IKDC), Lysholm, and Tegner scales were used. A KT-1000 arthrometer measurement (MEDmetric, San Diego, CA) by an experienced physician was made. RESULTS: Of the failures, 79% had radiographic evidence of malposition of their tunnels. In only 6 cases (21%) was the radiologic anatomy of tunnel placement judged to be correct on both the femoral and tibial side. The MRI or CT showed, in 6 cases, a too-centrally placed femoral tunnel. After revision surgery, the position of tunnels was corrected. A significant improvement of Lachman and pivot-shift phenomenon was observed. In particular, 17 patients had a negative Lachman test, and 11 patients had a grade I Lachman with a firm end point. Preoperatively, the pivot-shift test was positive in all cases, and at last follow-up in 7 patients (25%) a grade 1+ was found. Postoperatively, KT-1000 testing showed a mean manual maximum translation of 8.6 mm (SD, 2.34) for the affected knee; 97% of patients had a maximum manual side-to-side translation <5 mm. At the final postoperative evaluation, 26 patients (93%) graded their knees as normal or nearly normal according to the IKDC score. The mean Lysholm score was 93.6 (SD, 8.77) and the mean Tegner activity score was 6.1 (SD, 1.37). No patient required further revision. Five patients (18%) complained of hypersensitive scars from the reconstructive surgery that made kneeling difficult. CONCLUSIONS: There were satisfactory results after ACL revision surgery using quadriceps tendon and a 2-incision technique at a minimum 3 years' follow-up; 93% of patients returned to sports activities. LEVEL OF EVIDENCE: Level IV, case series, no control group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate a free-breathing three-dimensional (3D) dual inversion-recovery (DIR) segmented k-space gradient-echo (turbo field echo [TFE]) imaging sequence at 3T for the quantification of aortic vessel wall dimensions. The effect of respiratory motion suppression on image quality was tested. Furthermore, the reproducibility of the aortic vessel wall measurements was investigated. Seven healthy subjects underwent 3D DIR TFE imaging of the aortic vessel wall with and without respiratory navigator. Subsequently, this sequence with respiratory navigator was performed twice in 10 healthy subjects to test its reproducibility. The signal-to-noise (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and vessel wall volume (VWV) were assessed. Data were compared using the paired t-test, and the reproducibility of VWV measurements was evaluated using intraclass correlation coefficients (ICCs). SNR, CNR, and vessel wall sharpness were superior in scans performed with respiratory navigator compared to scans performed without. The ICCs concerning intraobserver, interobserver, and interscan reproducibility were excellent (0.99, 0.94, and 0.95, respectively). In conclusion, respiratory motion suppression substantially improves image quality of 3D DIR TFE imaging of the aortic vessel wall at 3T. Furthermore, this optimized technique with respiratory motion suppression enables assessment of aortic vessel wall dimensions with high reproducibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effect of a real-time adaptive trigger delay on image quality to correct for heart rate variability in 3D whole-heart coronary MR angiography (MRA). MATERIALS AND METHODS: Twelve healthy adults underwent 3D whole-heart coronary MRA with and without the use of an adaptive trigger delay. The moment of minimal coronary artery motion was visually determined on a high temporal resolution MRI. Throughout the scan performed without adaptive trigger delay, trigger delay was kept constant, whereas during the scan performed with adaptive trigger delay, trigger delay was continuously updated after each RR-interval using physiological modeling. Signal-to-noise, contrast-to-noise, vessel length, vessel sharpness, and subjective image quality were compared in a blinded manner. RESULTS: Vessel sharpness improved significantly for the middle segment of the right coronary artery (RCA) with the use of the adaptive trigger delay (52.3 +/- 7.1% versus 48.9 +/- 7.9%, P = 0.026). Subjective image quality was significantly better in the middle segments of the RCA and left anterior descending artery (LAD) when the scan was performed with adaptive trigger delay compared to constant trigger delay. CONCLUSION: Our results demonstrate that the use of an adaptive trigger delay to correct for heart rate variability improves image quality mainly in the middle segments of the RCA and LAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To develop and assess the diagnostic performance of a three-dimensional (3D) whole-body T1-weighted magnetic resonance (MR) imaging pulse sequence at 3.0 T for bone and node staging in patients with prostate cancer. MATERIALS AND METHODS This prospective study was approved by the institutional ethics committee; informed consent was obtained from all patients. Thirty patients with prostate cancer at high risk for metastases underwent whole-body 3D T1-weighted imaging in addition to the routine MR imaging protocol for node and/or bone metastasis screening, which included coronal two-dimensional (2D) whole-body T1-weighted MR imaging, sagittal proton-density fat-saturated (PDFS) imaging of the spine, and whole-body diffusion-weighted MR imaging. Two observers read the 2D and 3D images separately in a blinded manner for bone and node screening. Images were read in random order. The consensus review of MR images and the findings at prospective clinical and MR imaging follow-up at 6 months were used as the standard of reference. The interobserver agreement and diagnostic performance of each sequence were assessed on per-patient and per-lesion bases. RESULTS: The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were significantly higher with whole-body 3D T1-weighted imaging than with whole-body 2D T1-weighted imaging regardless of the reference region (bone or fat) and lesion location (bone or node) (P < .003 for all). For node metastasis, diagnostic performance (area under the receiver operating characteristic curve) was higher for whole-body 3D T1-weighted imaging (per-patient analysis; observer 1: P < .001 for 2D T1-weighted imaging vs 3D T1-weighted imaging, P = .006 for 2D T1-weighted imaging + PDFS imaging vs 3D T1-weighted imaging; observer 2: P = .006 for 2D T1-weighted imaging vs 3D T1-weighted imaging, P = .006 for 2D T1-weighted imaging + PDFS imaging vs 3D T1-weighted imaging), as was sensitivity (per-lesion analysis; observer 1: P < .001 for 2D T1-weighted imaging vs 3D T1-weighted imaging, P < .001 for 2D T1-weighted imaging + PDFS imaging vs 3D T1-weighted imaging; observer 2: P < .001 for 2D T1-weighted imaging vs 3D T1-weighted imaging, P < .001 for 2D T1-weighted imaging + PDFS imaging vs 3D T1-weighted imaging). CONCLUSION: Whole-body MR imaging is feasible with a 3D T1-weighted sequence and provides better SNR and CNR compared with 2D sequences, with a diagnostic performance that is as good or better for the detection of bone metastases and better for the detection of lymph node metastases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The objective of this trial was to assess which type of warm-up has the highest effect on virtual reality (VR) laparoscopy performance. The following warm-up strategies were applied: a hands-on exercise (group 1), a cognitive exercise (group 2), and no warm-up (control, group 3). DESIGN: This is a 3-arm randomized controlled trial. SETTING: The trial was conducted at the department of surgery of the University Hospital Basel in Switzerland. PARTICIPANTS: A total of 94 participants, all laypersons without any surgical or VR experience, completed the study. RESULTS: A total of 96 participants were randomized, 31 to group 1, 31 to group 2, and 32 to group 3. There were 2 postrandomization exclusions. In the multivariate analysis, we found no evidence that the intervention had an effect on VR performance as represented by 6 calculated subscores of accuracy, time, and path length for (1) camera manipulation and (2) hand-eye coordination combined with 2-handed maneuvers (p = 0.795). Neither the comparison of the average of the intervention groups (groups 1 and 2) vs control (group 3) nor the pairwise comparisons revealed any significant differences in VR performance, neither multivariate nor univariate. VR performance improved with increasing performance score in the cognitive exercise warm-up (iPad 3D puzzle) for accuracy, time, and path length in the camera navigation task. CONCLUSIONS: We were unable to show an effect of the 2 tested warm-up strategies on VR performance in laypersons. We are currently designing a follow-up study including surgeons rather than laypersons with a longer warm-up exercise, which is more closely related to the final task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The graffiti on pottery discovered on the site of Aventicum (Avenches, VD/Switzerland) form the largest corpus of minor inscriptions of the Roman Empire studied until now. Indeed, a total of 1828 graffiti have been found. The reading and the recording of the inscriptions are generally dependent on the state of conservation of the graffito and its support. In numerous cases, only a pale shadow of the inscription is visible, which makes traditional observations, such as visual observations with the naked eye, unsuitable for its decipherment. Consequently, advanced techniques have been applied for enhancing the readability of such inscriptions. In our paper we show the efficiency of 3D laser profilometry as well as high resolution photography as powerful means to decipher illegible engraved inscriptions. The use of such analyses to decipher graffiti on pottery or on other materials enables a better understanding of minor inscriptions and improves the knowledge of the daily life of ancient populations substantially.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most sedimentary modelling programs developed in recent years focus on either terrigenous or carbonate marine sedimentation. Nevertheless, only a few programs have attempted to consider mixed terrigenous-carbonate sedimentation, and most of these are two-dimensional, which is a major restriction since geological processes take place in 3D. This paper presents the basic concepts of a new 3D mathematical forward simulation model for clastic sediments, which was developed from SIMSAFADIM, a previous 3D carbonate sedimentation model. The new extended model, SIMSAFADIM-CLASTIC, simulates processes of autochthonous marine carbonate production and accumulation, together with clastic transport and sedimentation in three dimensions of both carbonate and terrigenous sediments. Other models and modelling strategies may also provide realistic and efficient tools for prediction of stratigraphic architecture and facies distribution of sedimentary deposits. However, SIMSAFADIM-CLASTIC becomes an innovative model that attempts to simulate different sediment types using a process-based approach, therefore being a useful tool for 3D prediction of stratigraphic architecture and facies distribution in sedimentary basins. This model is applied to the neogene Vallès-Penedès half-graben (western Mediterranean, NE Spain) to show the capacity of the program when applied to a realistic geologic situation involving interactions between terrigenous clastics and carbonate sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: When planning SIRT using 90Y microspheres, the partition model is used to refine the activity calculated by the body surface area (BSA) method to potentially improve the safety and efficacy of treatment. For this partition model dosimetry, accurate determination of mean tumor-to-normal liver ratio (TNR) is critical since it directly impacts absorbed dose estimates. This work aimed at developing and assessing a reliable methodology for the calculation of 99mTc-MAA SPECT/CT-derived TNR ratios based on phantom studies. Materials and methods: IQ NEMA (6 hot spheres) and Kyoto liver phantoms with different hot/background activity concentration ratios were imaged on a SPECT/CT (GE Infinia Hawkeye 4). For each reconstruction with the IQ phantom, TNR quantification was assessed in terms of relative recovery coefficients (RC) and image noise was evaluated in terms of coefficient of variation (COV) in the filled background. RCs were compared using OSEM with Hann, Butterworth and Gaussian filters, as well as FBP reconstruction algorithms. Regarding OSEM, RCs were assessed by varying different parameters independently, such as the number of iterations (i) and subsets (s) and the cut-off frequency of the filter (fc). The influence of the attenuation and diffusion corrections was also investigated. Furthermore, both 2D-ROIs and 3D-VOIs contouring were compared. For this purpose, dedicated Matlab© routines were developed in-house for automatic 2D-ROI/3D-VOI determination to reduce intra-user and intra-slice variability. Best reconstruction parameters and RCs obtained with the IQ phantom were used to recover corrected TNR in case of the Kyoto phantom for arbitrary hot-lesion size. In addition, we computed TNR volume histograms to better assess uptake heterogeneityResults: The highest RCs were obtained with OSEM (i=2, s=10) coupled with the Butterworth filter (fc=0.8). Indeed, we observed a global 20% RC improvement over other OSEM settings and a 50% increase as compared to the best FBP reconstruction. In any case, both attenuation and diffusion corrections must be applied, thus improving RC while preserving good image noise (COV<10%). Both 2D-ROI and 3D-VOI analysis lead to similar results. Nevertheless, we recommend using 3D-VOI since tumor uptake regions are intrinsically 3D. RC-corrected TNR values lie within 17% around the true value, substantially improving the evaluation of small volume (<15 mL) regions. Conclusions: This study reports the multi-parameter optimization of 99mTc MAA SPECT/CT images reconstruction in planning 90Y dosimetry for SIRT. In phantoms, accurate quantification of TNR was obtained using OSEM coupled with Butterworth and RC correction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Outcome following foot and ankle surgery can be assessed by disease- and region-specific scores. Many scoring systems exist, making comparison among studies difficult. The present study focused on outcome measures for a common foot and ankle abnormality and compared the results obtained by 2 disease-specific and 2 body region-specific scores. METHODS: We reviewed 41 patients who underwent lateral ankle ligament reconstruction. Four outcome scales were administered simultaneously: the Cumberland Ankle Instability Tool (CAIT) and the Chronic Ankle Instability Scale (CAIS), which are disease specific, and the American Orthopedic Foot & Ankle Society (AOFAS) hindfoot scale and the Foot and Ankle Ability Measure (FAAM), which are both body region-specific. The degree of correlation between scores was assessed by Pearson's correlation coefficient. Nonparametric tests, the Kruskal-Wallis and the Mann-Whitney test for pairwise comparison of the scores, were performed. RESULTS: A significant difference (P < .005) was observed between the CAIS and the AOFAS score (P = .0002), between the CAIS and the FAAM 1 (P = .0001), and between the CAIT and the AOFAS score (P = .0003). CONCLUSIONS: This study compared the performances of 4 disease- and body region-specific scoring systems. We demonstrated a correlation between the 4 administered scoring systems and notable differences between the results given by each of them. Disease-specific scores appeared more accurate than body region-specific scores. A strong correlation between the AOFAS score and the other scales was observed. The FAAM seemed a good compromise because it offered the possibility to evaluate the patient according to his or her own functional demand. CLINICAL RELEVANCE: The present study contributes to the development of more critical and accurate outcome assesment methods in foot and ankle surgery.