954 resultados para 080302 Computer System Architecture
Resumo:
To coordinate ambulances for emergency medical services, a multiagent system uses an auction mechanism based on trust. Results of tests using real data show that this system can efficiently assign ambulances to patients, thereby reducing transportation time. Emergency transportation on specialized vehicles is needed when a person's health is in risk of irreparable damage. A patient can't benefit from sophisticated medical treatments and technologies if she or he isn't placed in a proper healthcare center with the appropriate medical team. For example, strokes are neurological emergencies involving a limited amount of time in which treatment measures are effective
Resumo:
This work shows the use of adaptation techniques involved in an e-learning system that considers students' learning styles and students' knowledge states. The mentioned e-learning system is built on a multiagent framework designed to examine opportunities to improve the teaching and to motivate the students to learn what they want in a user-friendly and assisted environment
Resumo:
The JModel suite consists of a number of models of aspects of the Earth System. They can all be run from the JModels website. They are written in the Java language for maximum portability, and are capable of running on most computing platforms including Windows, MacOS and Unix/Linux. The models are controlled via graphical user interfaces (GUI), so no knowledge of computer programming is required to run them. The models currently available from the JModels website are: Ocean phosphorus cycle Ocean nitrogen and phosphorus cycles Ocean silicon and phosphorus cycles Ocean and atmosphere carbon cycle Energy radiation balance model (under development) The main purpose of the models is to investigate how material and energy cycles of the Earth system are regulated and controlled by different feedbacks. While the central focus is on these feedbacks and Earth System stabilisation, the models can also be used in other ways. These resources have been developed by: National Oceanography Centre, Southampton project led by Toby Tyrrell and Andrew Yool, focus on how the Earth system works.
Resumo:
Wednesday 23rd April 2014 Speaker(s): Willi Hasselbring Organiser: Leslie Carr Time: 23/04/2014 14:00-15:00 Location: B32/3077 File size: 802Mb Abstract The internal behavior of large-scale software systems cannot be determined on the basis of static (e.g., source code) analysis alone. Kieker provides complementary dynamic analysis capabilities, i.e., monitoring/profiling and analyzing a software system's runtime behavior. Application Performance Monitoring is concerned with continuously observing a software system's performance-specific runtime behavior, including analyses like assessing service level compliance or detecting and diagnosing performance problems. Architecture Discovery is concerned with extracting architectural information from an existing software system, including both structural and behavioral aspects like identifying architectural entities (e.g., components and classes) and their interactions (e.g., local or remote procedure calls). In addition to the Architecture Discovery of Java systems, Kieker supports Architecture Discovery for other platforms, including legacy systems, for instance, inplemented in C#, C++, Visual Basic 6, COBOL or Perl. Thanks to Kieker's extensible architecture it is easy to implement and use custom extensions and plugins. Kieker was designed for continuous monitoring in production systems inducing only a very low overhead, which has been evaluated in extensive benchmark experiments. Please, refer to http://kieker-monitoring.net/ for more information.
Resumo:
Title: Data-Driven Text Generation using Neural Networks Speaker: Pavlos Vougiouklis, University of Southampton Abstract: Recent work on neural networks shows their great potential at tackling a wide variety of Natural Language Processing (NLP) tasks. This talk will focus on the Natural Language Generation (NLG) problem and, more specifically, on the extend to which neural network language models could be employed for context-sensitive and data-driven text generation. In addition, a neural network architecture for response generation in social media along with the training methods that enable it to capture contextual information and effectively participate in public conversations will be discussed. Speaker Bio: Pavlos Vougiouklis obtained his 5-year Diploma in Electrical and Computer Engineering from the Aristotle University of Thessaloniki in 2013. He was awarded an MSc degree in Software Engineering from the University of Southampton in 2014. In 2015, he joined the Web and Internet Science (WAIS) research group of the University of Southampton and he is currently working towards the acquisition of his PhD degree in the field of Neural Network Approaches for Natural Language Processing. Title: Provenance is Complicated and Boring — Is there a solution? Speaker: Darren Richardson, University of Southampton Abstract: Paper trails, auditing, and accountability — arguably not the sexiest terms in computer science. But then you discover that you've possibly been eating horse-meat, and the importance of provenance becomes almost palpable. Having accepted that we should be creating provenance-enabled systems, the challenge of then communicating that provenance to casual users is not trivial: users should not have to have a detailed working knowledge of your system, and they certainly shouldn't be expected to understand the data model. So how, then, do you give users an insight into the provenance, without having to build a bespoke system for each and every different provenance installation? Speaker Bio: Darren is a final year Computer Science PhD student. He completed his undergraduate degree in Electronic Engineering at Southampton in 2012.
Resumo:
Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and convergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles. We use whole genome resequencing from four hybrid zones between divergent color pattern races of Heliconius erato and two hybrid zones of the co-mimic Heliconius melpomene to examine genetic variation across 2.2 Mb of a partial reference sequence. In the intergenic region near optix, the gene previously shown to be responsible for the complex red pattern variation in Heliconius, population genetic analyses identify a shared 65-kb region of divergence that includes several sites perfectly associated with phenotype within each species. This region likely contains multiple cis-regulatory elements that control discrete expression domains of optix. The parallel signatures of genetic differentiation in H. erato and H. melpomene support a shared genetic architecture between the two distantly related co-mimics; however, phylogenetic analysis suggests mimetic patterns in each species evolved independently. Using a combination of next-generation sequencing analyses, we have refined our understanding of the genetic architecture of wing pattern variation in Heliconius and gained important insights into the evolution of novel adaptive phenotypes in natural populations.
Estado situacional de los modelos basados en agentes y su impacto en la investigación organizacional
Resumo:
En un mundo hiperconectado, dinámico y cargado de incertidumbre como el actual, los métodos y modelos analíticos convencionales están mostrando sus limitaciones. Las organizaciones requieren, por tanto, herramientas útiles que empleen tecnología de información y modelos de simulación computacional como mecanismos para la toma de decisiones y la resolución de problemas. Una de las más recientes, potentes y prometedoras es el modelamiento y la simulación basados en agentes (MSBA). Muchas organizaciones, incluidas empresas consultoras, emplean esta técnica para comprender fenómenos, hacer evaluación de estrategias y resolver problemas de diversa índole. Pese a ello, no existe (hasta donde conocemos) un estado situacional acerca del MSBA y su aplicación a la investigación organizacional. Cabe anotar, además, que por su novedad no es un tema suficientemente difundido y trabajado en Latinoamérica. En consecuencia, este proyecto pretende elaborar un estado situacional sobre el MSBA y su impacto sobre la investigación organizacional.
Resumo:
This paper presents a case study that explores the advantages that can be derived from the use of a design support system during the design of wastewater treatment plants (WWTP). With this objective in mind a simplified but plausible WWTP design case study has been generated with KBDS, a computer-based support system that maintains a historical record of the design process. The study shows how, by employing such a historical record, it is possible to: (1) rank different design proposals responding to a design problem; (2) study the influence of changing the weight of the arguments used in the selection of the most adequate proposal; (3) take advantage of keywords to assist the designer in the search of specific items within the historical records; (4) evaluate automatically the compliance of alternative design proposals with respect to the design objectives; (5) verify the validity of previous decisions after the modification of the current constraints or specifications; (6) re-use the design records when upgrading an existing WWTP or when designing similar facilities; (7) generate documentation of the decision making process; and (8) associate a variety of documents as annotations to any component in the design history. The paper also shows one possible future role of design support systems as they outgrow their current reactive role as repositories of historical information and start to proactively support the generation of new knowledge during the design process
Resumo:
The activated sludge process - the main biological technology usually applied to wastewater treatment plants (WWTP) - directly depends on live beings (microorganisms), and therefore on unforeseen changes produced by them. It could be possible to get a good plant operation if the supervisory control system is able to react to the changes and deviations in the system and can take the necessary actions to restore the system’s performance. These decisions are often based both on physical, chemical, microbiological principles (suitable to be modelled by conventional control algorithms) and on some knowledge (suitable to be modelled by knowledge-based systems). But one of the key problems in knowledge-based control systems design is the development of an architecture able to manage efficiently the different elements of the process (integrated architecture), to learn from previous cases (spec@c experimental knowledge) and to acquire the domain knowledge (general expert knowledge). These problems increase when the process belongs to an ill-structured domain and is composed of several complex operational units. Therefore, an integrated and distributed AI architecture seems to be a good choice. This paper proposes an integrated and distributed supervisory multi-level architecture for the supervision of WWTP, that overcomes some of the main troubles of classical control techniques and those of knowledge-based systems applied to real world systems