967 resultados para (ALPHA-DIIMINE)NICKEL(II) CATALYSTS
Resumo:
We have investigated the gas-phase reaction of the alpha-aminoacetate (glycyl) radical anion (NH2(sic)CHCO2-) with O-2 using ion trap mass spectrometry, quantum chemistry, and statistical reaction rate theory. This radical is found to undergo a remarkably rapid reaction with O-2 to form the hydroperoxyl radical (HO2(sic)) and an even-electron imine (NHCHCO2-), with experiments and master equation simulations revealing that reaction proceeds at the ion molecule collision rate. This reaction is facilitated by a low-energy concerted HO2(sic) elimination mechanism in the NH2CH(OO(sic))CO2- peroxyl radical. These findings can explain the widely observed free-radical-mediated oxidation of simple amino acids to amides plus alpha-keto acids (their imine hydrolysis products). This work also suggests that imines will be the main intermediates in the atmospheric oxidation of primary and secondary amines, including amine carbon capture solvents such as 2-aminoethanol (commonly known as monoethanolamine, or MEA), in a process that avoids the ozone-promoting conversion of (sic)NO to (sic)NO2 commonly encountered in peroxyl radical chemistry.
Resumo:
The aim of this paper is to compare the performances of the highly porous Nb2O5 Schottky based sensors formed using different catalytic metals for ethanol vapour sensing. The fabricated sensors consist of a fairly ordered nano-vein like porous Nb2O5 prepared via an elevated temperature anodization method. Subsequently, Pt, Pd and Au were sputtered as both Schottky contacts and catalysts for the comparative studies. These metals are chosen as they have large work functions in comparison to the electron affinity of the anodized Nb2O5. It is demonstrated that the device based on Pd/Nb2O5 Schottky contact has the highest sensitivity amongst the developed sensors. The sensing behaviors were studied in terms of the Schottky barrier height variations and properties of the metal catalysts.
Resumo:
As a sequel to a paper that dealt with the analysis of two-way quantitative data in large germplasm collections, this paper presents analytical methods appropriate for two-way data matrices consisting of mixed data types, namely, ordered multicategory and quantitative data types. While various pattern analysis techniques have been identified as suitable for analysis of the mixed data types which occur in germplasm collections, the clustering and ordination methods used often can not deal explicitly with the computational consequences of large data sets (i.e. greater than 5000 accessions) with incomplete information. However, it is shown that the ordination technique of principal component analysis and the mixture maximum likelihood method of clustering can be employed to achieve such analyses. Germplasm evaluation data for 11436 accessions of groundnut (Arachis hypogaea L.) from the International Research Institute of the Semi-Arid Tropics, Andhra Pradesh, India were examined. Data for nine quantitative descriptors measured in the post-rainy season and five ordered multicategory descriptors were used. Pattern analysis results generally indicated that the accessions could be distinguished into four regions along the continuum of growth habit (or plant erectness). Interpretation of accession membership in these regions was found to be consistent with taxonomic information, such as subspecies. Each growth habit region contained accessions from three of the most common groundnut botanical varieties. This implies that within each of the habit types there is the full range of expression for the other descriptors used in the analysis. Using these types of insights, the patterns of variability in germplasm collections can provide scientists with valuable information for their plant improvement programs.
Resumo:
Macrophonics II presents new Australian work emerging from the leading edge of performance interface research. The program addresses the emerging dialogue between traditional media and emerging digital media, as well as dialogues across a broad range of musical traditions. Recent technological developments are causing a complete reevaluation of the relationships between media and genres in art, and Macrophonics II presents a cross-section of responses to this situation. Works in the program foreground an approach to performance that integrates sensors with novel performance control devices, and/or examine how machines can be made musical in performance. The program presents works by Australian artists Donna Hewitt, Julian Knowles and Wade Marynowsky, with choreography by Avril Huddy and dance performance by Lizzie and Zaimon Vilmanis. From sensor-based microphones and guitars, through performance a/v, to post-rock dronescapes, movement inspired works and experimental electronica, Macrophonics II provides a broad and engaging survey of new performance approaches in mediatised environments. Initial R&D for the work was supported by a range of institutions internationally, including the Australia Council for the Arts, Arts Queensland, STEIM (Holland) and the Nes Artist Residency (Iceland).
Resumo:
The mechanisms and the reaction products for the oxidation of sulfide ions in the presence of pyrite have been established. When the leach solution contains free sulfide ions, oxidation occurs via electron transfer from the sulfide ion to dissolved oxygen on the pyrite mineral surface, with polysulfides being formed as an intermediate oxidation product. In the absence of cyanide, the polysulfides are further oxidised to thiosulfate, whilst with cyanide present, thiocyanate and sulfite are also formed from the reaction of polysulfides with cyanide and dissolved oxygen. Polysulfide chain length has been shown to affect the final reaction products of polysulfide oxidation by dissolved oxygen. The rate of pyrite catalysed sulfide ion oxidation was found to be slower in cyanide solutions compared to cyanide free solutions. Mixed potential measurements indicated that the reduction of oxygen at the pyrite surface is hindered in the presence of cyanide. The presence of sulfide ions was also found to activate the pyrite surface, increasing its rate of oxidation by oxygen. This effect was particularly evident in the presence of cyanide; in the presence of sulfide the increase in total sulfur from pyrite oxidation was 2.3 mM in 7 h, compared to an increase of <1 mM in the absence of sulfide over 24 h.
Resumo:
Carbon microcoils (CMCs) have been coated with a nickel-phosphorus (Ni-P) film using an electroless plating process, with sodium hypophosphite as a reducing agent in an alkaline bath. CMC composites have potential applications as microwave absorption materials. The morphology, elemental composition and phases in the coating layer of the CMCs and Ni-coated CMCs were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The effects of process parameters such as pH, temperature and coating time of the plating bath on the phosphorus content and deposition rate of the electroless Ni-P coating were studied. The results revealed that a continuous, uniform and low-phosphorous nickel coating was deposited on the surface of the CMCs for 20 min at pH 9.0, plating bath temperature 70 °C. The as-deposited coatings with approximately 4.5 wt.% phosphorus were found to consist of a mix of nano- and microcrystalline phases. The mean particle size of Ni-P nanoparticles on the outer surface of the CMCs was around 11.9 nm. The deposition rate was found to moderately increase with increasing pH, whereas, the phosphorous content of the deposit exhibited a significant decrease. Moreover, the material of the coating underwent a phase transition between an amorphous and a crystalline structure. The thickness of the deposit and the deposition rate may be controlled through careful variation of the coating time and plating bath temperature.
Resumo:
Using density functional theory, we have investigated the catalytic properties of bimetallic complex catalysts PtlAum(CO)n (l + m = 2, n = 1–3) in the reduction of SO2 by CO. Due to the strong coupling between the C-2p and metal 5d orbitals, pre-adsorption of CO molecules on the PtlAum is found to be very effective in not only reducing the activation energy, but also preventing poisoning by sulfur. As result of the coupling, the metal 5d band is broadened and down-shifted, and charge is transferred from the CO molecules to the PtlAum. As SO2 is adsorbed on the catalyst, partial charge moves to the anti-σ bonding orbitals between S and O in SO2, weakening the S–O bond strength. This effect is enhanced by pre-adsorbing up to three CO molecules, therefore the S–O bonds become vulnerable. Our results revealed the mechanism of the excellent catalytic properties of the bimetallic complex catalysts.
Resumo:
A long-held urban redevelopment strategy has been the investment in flagship cultural projects—large-scale, iconic museums and arts centres that are intended to enhance the city image while catalyzing private sector investment and attracting tourists to the surrounding area. This paper concentrates on an aspect of the flagship cultural strategy that has received surprisingly little focused attention—the role that urban design and context play in realizing project outcomes. The analysis concentrates on two established flagship museums in Los Angeles and San Jose, California. The research demonstrates that certain urban design characteristics can negatively affect the ability of a project to attract visitors and generate commercial activity. However, at the same time, factors beyond the local context may be an overriding factor in project outcomes thus calling into question the concept of cultural catalyst.
Resumo:
RNA polymerase II (pol II) transcription termination requires co‐transcriptional recognition of a functional polyadenylation signal, but the molecular mechanisms that transduce this signal to pol II remain unclear. We show that Yhh1p/Cft1p, the yeast homologue of the mammalian AAUAAA interacting protein CPSF 160, is an RNA‐binding protein and provide evidence that it participates in poly(A) site recognition. Interestingly, RNA binding is mediated by a central domain composed of predicted β‐propeller‐forming repeats, which occurs in proteins of diverse cellular functions. We also found that Yhh1p/Cft1p bound specifically to the phosphorylated C‐terminal domain (CTD) of pol II in vitro and in a two‐hybrid test in vivo. Furthermore, transcriptional run‐on analysis demonstrated that yhh1 mutants were defective in transcription termination, suggesting that Yhh1p/Cft1p functions in the coupling of transcription and 3′‐end formation. We propose that direct interactions of Yhh1p/Cft1p with both the RNA transcript and the CTD are required to communicate poly(A) site recognition to elongating pol II to initiate transcription termination.
Resumo:
The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.
Resumo:
Nano Zero valent iron (Fe0) were reported as an effective material for azo dye removal, however, similar to other nano-materials, ultra-fine powder has a strong tendency to agglomerate into larger particles, resulting in an adverse effect on both effective surface area and catalyst performance. Here we report nano sized Fe0 particles dispersed onto the surface of natural bentonites. X-ray diffraction was used to study the sample phases. Scanning electron microscopy and transmission electron microscopy were applied to study the morphology and morphological changes. Spherical individual Fe0 particles were observed after dispersion onto bentonites, and these samples were used for orange II (OII) decolourization with wide working pH range. Higher reactivity is attributed to good dispersion of Fe0 particles on clay minerals’ surface. This study is significant for providing novel modified clay based catalyst materials for the decolourization of azo dye contaminants from wastewater.
Resumo:
The ligands G1- and G2-oligo (benzyl ether) (PBE) dendrons and their iron(II) complexes [Fe(Gn-PBE)3]A2·xH2O (with n = 1, 2 and A = triflate, tosylate) were prepared. The magnetic properties of the complexes were investigated by a SQUID magnetometer. All complexes exhibit gradual spin transition below room temperature. At very low temperatures the magnetic behaviour reflects zero-field splitting (ZFS) effects. 57Fe-Mössbauer spectroscopy was performed to distinguish between ZFS of high spin species and spin state conversion into the low spin state. Further characterisation was carried out by thermogravimetric analysis (TGA) and FT-IR spectroscopy. Structural features have been determined by powder XRD measurements.
Resumo:
The dendritic triazole-based complexes \[Fe(G1-BOC)3](triflate) 2·xH2O (1; G1-BOC = tert-butyl {3-\[3-(3-tert- butoxycarbonylaminopropyl)-5-(\[1,2,4]triazol-4-ylcarbamoyl)-phenyl]propyl} carbamate, triflate = CF3SO3-), \[Fe(G1-BOC) 3]-(tosylate)2·xH2O(2;tosylate = p-CH3PhSO3-),\[Fe(G1-DPBE)3]-(triflate) 2·xH2O {3; G1-DPBE = 3,5-bis(3,5- didodecaoxybenzyloxy)-N-\[1,2,4]triazol-4-ylbenzamide}, \[Fe(G1-DPBE) 3]-(tosylate)2·xH2O (4) and \[Fe(G1-DPBE)3](BF4)2·xH2O (5) were designed and synthesized. Magnetic and thermal properties of these novel complexes were characterized by magnetic susceptibility measurements, 57Fe Mössbauer spectroscopy and thermogravimetric analysis or differential scanning calorimetry, respectively. All dendritic complexes under study show different spin-transition behaviour with respect to the nature of different dendritic ligands and counteranions. Complexes 1 and 2 have pronounced effects of a spin-state change during the first heating process and gradual spintransition properties for further temperature treatments, whereas 3 and 4 exhibited a very sharp spin-state change in the first heating procedures. Complex 5 showed a gradual spin-transition curve. In this paper, we report how the magnetic properties of these complexes are correlated with noncoordinated water molecules and their effects on spin states.
Resumo:
In part 1 of this update, we put forward the argument that integration in ERP based environments can be achieved in ways other than adopting a software configuration only approach. We drew on evidence from two large ERP implementations to show how, despite the cost implications, some customization, if carefully managed, could prove helpful. In this, the final part of the update, we discuss the benefits, and potential pitfalls, involved in enacting a non-standard based integration strategy. This requires attention to a) broadening the integration definition; b) bringing legacy practices forward and c) developing a customization based integration strategy.