946 resultados para toxic goiter
Resumo:
A significant fraction of the total nitrogen entering coastal and estuarine ecosystems along the eastern U.S. coast arises from atmospheric deposition; however, the exact role of atmospherically derived nitrogen in the decline of the health of coastal, estuarine, and inland waters is still uncertain. From the perspective of coastal ecosystem eutrophication, nitrogen compounds from the air, along with nitrogen from sewage, industrial effluent, and fertilizers, become a source of nutrients to the receiving ecosystem. Eutrophication, however, is only one of the detrimental impacts of the emission of nitrogen containing compounds to the atmosphere. Other adverse effects include the production of tropospheric ozone, acid deposition, and decreased visibility (photochemical smog). Assessments of the coastal eutrophication problem indicate that the atmospheric deposition loading is most important in the region extending from Albemarle/Parnlico Sounds to the Gulf of Maine; however, these assessments are based on model outputs supported by a meager amount of actual data. The data shortage is severe. The National Research Council specifically mentions the atmospheric role in its recent publication for the Committee on Environmental and Natural Resources, Priorities for Coastal Ecosystem Science (1994). It states that, "Problems associated with changes in the quantity and quality of inputs to coastal environments from runoff and atmospheric deposition are particularly important [to coastal ecosystem integrity]. These include nutrient loading from agriculture and fossil fuel combustion, habitat losses from eutrophication, widespread contamination by toxic materials, changes in riverborne sediment, and alteration of coastal hydrodynamics. "
Resumo:
Karenia brevis is the dominant toxic red tide algal species in the Gulf of Mexico. It produces potent neurotoxins (brevetoxins [PbTxs]), which negatively impact human and animal health, local economies, and ecosystem function. Field measurements have shown that cellular brevetoxin contents vary from 1–68 pg/cell but the source of this variability is uncertain. Increases in cellular toxicity caused by nutrient-limitation and inter-strain differences have been observed in many algal species. This study examined the effect of P-limitation of growth rate on cellular toxin concentrations in five Karenia brevis strains from different geographic locations. Phosphorous was selected because of evidence for regional P-limitation of algal growth in the Gulf of Mexico. Depending on the isolate, P-limited cells had 2.3- to 7.3-fold higher PbTx per cell than P-replete cells. The percent of cellular carbon associated with brevetoxins (%C-PbTx) was ~ 0.7 to 2.1% in P-replete cells, but increased to 1.6–5% under P-limitation. Because PbTxs are potent anti-grazing compounds, this increased investment in PbTxs should enhance cellular survival during periods of nutrient-limited growth. The %C-PbTx was inversely related to the specific growth rate in both the nutrient-replete and P-limited cultures of all strains. This inverse relationship is consistent with an evolutionary tradeoff between carbon investment in PbTxs and other grazing defenses, and C investment in growth and reproduction. In aquatic environments where nutrient supply and grazing pressure often vary on different temporal and spatial scales, this tradeoff would be selectively advantageous as it would result in increased net population growth rates. The variation in PbTx/cell values observed in this study can account for the range of values observed in the field, including the highest values, which are not observed under N-limitation. These results suggest P-limitation is an important factor regulating cellular toxicity and adverse impacts during at least some K. brevis blooms.
Resumo:
With the global proliferation of toxic Harmful Algal Bloom (HAB) species, there is a need to identify the environmental and biological factors that regulate toxin production. One such species, Karenia brevis, forms nearly annual blooms that threaten coastal regions throughout the Gulf of Mexico. This dinoflagellate produces brevetoxins, potent neurotoxins that cause neurotoxic shellfish poisoning and respiratory illness in humans, as well as massive fish kills. A recent publication reported that a rapid decrease in salinity increased cellular toxin quotas in K. brevis and hypothesized that brevetoxins serve a role in osmoregulation. This finding implied that salinity shifts could significantly alter the toxic impacts of blooms. We repeated the original experiments separately in three different laboratories and found no evidence for increased brevetoxin production in response to low-salinity stress in any of the eight K. brevis strains we tested, including three used in the original study. Thus, we find no support for an osmoregulatory function of brevetoxins. The original publication also stated that there was no known cellular function for brevetoxins. However, there is increasing evidence that brevetoxins promote survival of the dinoflagellates by deterring grazing by zooplankton. Whether they have other as yet unidentified cellular functions is currently unknown.
Resumo:
The distribution and intensity of a bloom of the toxic cyanobacterium, Microcystis aeruginosa, in western Lake Erie was characterized using a combination of satellite ocean-color imagery, field data, and meteorological observations. The bloom was first identified by satellite on 14 August 2008 and persisted for more than 2 months. The distribution and intensity of the bloom was estimated using a satellite algorithm that is sensitive to near-surface concentrations of M. aeruginosa. Increases in both area and intensity were most pronounced for wind stress less than 0.05 Pa. Area increased while intensity did not change for wind stresses of 0.05–0.1 Pa, and both decreased for wind stress greater than 0.1 Pa. The recovery in intensity at the surface after strong wind events indicated that high wind stress mixed the bloom through the water column and that it returned to the surface once mixing stopped. This interaction is consistent with the understanding of the buoyancy of these blooms. Cloud cover (reduced light) may have a weak influence on intensity during calm conditions. While water temperature remained greater than 15°C, the bloom intensified if there were calm conditions. For water temperature less than 15°C, the bloom subsided under similar conditions. As a result, wind stress needs to be considered when interpreting satellite imagery of these blooms.
Resumo:
Land-based pollution is commonly identified as a major contributor to the observed deterioration of shallow-water coral reef ecosystem health. Human activity on the coastal landscape often induces nutrient enrichment, hypoxia, harmful algal blooms, toxic contamination and other stressors that have degraded the quality of coastal waters. Coral reef ecosystems throughout Puerto Rico, including Jobos Bay, are under threat from coastal land uses such as urban development, industry and agriculture. The objectives of this report were two-fold: 1. To identify potentially harmful land use activities to the benthic habitats of Jobos Bay, and 2. To describe a monitoring plan for Jobos Bay designed to assess the impacts of conservation practices implemented on the watershed. This characterization is a component of the partnership between the U.S. Department of Agriculture (USDA) and the National Oceanic and Atmospheric Administration (NOAA) established by the Conservation Effects Assessment Project (CEAP) in Jobos Bay. CEAP is a multi-agency effort to quantify the environmental benefits of conservation practices used by private landowners participating in USDA programs. The Jobos Bay watershed, located in southeastern Puerto Rico, was selected as the first tropical CEAP Special Emphasis Watershed (SEW). Both USDA and NOAA use their respective expertise in terrestrial and marine environments to model and monitor Jobos Bay resources. This report documents NOAA activities conducted in the first year of the three-year CEAP effort in Jobos Bay. Chapter 1 provides a brief overview of the project and background information on Jobos Bay and its watershed. Chapter 2 implements NOAA’s Summit to Sea approach to summarize the existing resource conditions on the watershed and in the estuary. Summit to Sea uses a GIS-based procedure that links patterns of land use in coastal watersheds to sediment and pollutant loading predictions at the interface between terrestrial and marine environments. The outcome of Summit to Sea analysis is an inventory of coastal land use and predicted pollution threats, consisting of spatial data and descriptive statistics, which allows for better management of coral reef ecosystems. Chapters 3 and 4 describe the monitoring plan to assess the ecological response to conservation practices established by USDA on the watershed. Jobos Bay is the second largest estuary in Puerto Rico, but has more than three times the shoreline of any other estuarine area on the island. It is a natural harbor protected from offshore wind and waves by a series of mangrove islands and the Punta Pozuelo peninsula. The Jobos Bay marine ecosystem includes 48 km² of mangrove, seagrass, coral reef and other habitat types that span both intertidal and subtidal areas. Mapping of Jobos Bay revealed 10 different benthic habitats of varying prevalence, and a large area of unknown bottom type covering 38% of the entire bay. Of the known benthic habitats, submerged aquatic vegetation, primarily seagrass, is the most common bottom type, covering slightly less than 30% of the bay. Mangroves are the dominant shoreline feature, while coral reefs comprise only 4% of the total benthic habitat. However, coral reefs are some of the most productive habitats found in Jobos Bay, and provide important habitat and nursery grounds for fish and invertebrates of commercial and recreational value.
Resumo:
The National Status and Trends (NS&T) Program has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue because of its potential toxic effects on biological resources and often, indirectly, on human health. Thus, characterizing and delineating areas of sediment contamination and toxicity and demonstrating their effect(s) on benthic living resources are therefore important goals of coastal resource management at NOAA. The National Centers for Coastal Ocean Science, and the Office of National Marine Sanctuaries, in cooperation with the U.S. Geological Survey (USGS), University of California Moss Landing Marine Lab (MLML), and the Monterey Bay Aquarium Research Institute (MBARI), conducted ecosystem monitoring and characterization studies within and between marine sanctuaries along the California coast in 2002 and 2004 on the NOAA RV McArthur. One of the objectives was to perform a systematic assessment of the chemical and physical habitats and associated biological communities in soft bottom habitats on the continental shelf and slope in the central California region. This report addresses the magnitude and extent of chemical contamination, and contaminant transport patterns in the region. Ongoing studies of the benthic community are in progress and will be reported in an integrated assessment of habitat quality and the parameters that govern natural resource distributions on the continental margin and in canyons in the region.
Resumo:
A bioassay study was conducted using three organic pesticides to determine their comparative toxicity to fingerlings of Hypophthalmichthys molitrix. There was wide variation in the toxicity of different pesticides with 24 hr LC sub(50) values ranging from 0.000403 to 0.294 mg/l. Endosulfan appeared to be the most toxic, whereas BHC was the least.
Resumo:
The acute toxic effect of the toxicant sumithion (50% E.C.) on mortality rate (after 24, 48, 72, and 96 h), total RBC count and haemoglobin content (after 48 and 72 h) on Heteropneustes fossilis was investigated at four concentrations (9.7, 10.7 and 11.1 ppm). The sumithion treated fishes showed lower RBC and Hb levels than the untreated ones. A gradual decrease in the total RBC counts and Hb contents was recorded with increasing concentration of toxicant after 72 h but the blood showed fluctuating values after 48 h of treatment.
Resumo:
The comparative toxicity was evaluated using four detergents, viz, linear alkylbenzene sulfonate (LAS), branched alkylbenzene sulfonate (BAS), sodium sulfonate (SS) and alfa-olefin sulfonate (AOS) on an estuarine fish, Ambassis commersonii, abundant in Kali estuarine system. Standard toxicity bioassay method was followed as per APHA (1980). AOS concentration in "Mega" soap was determined by the standard MBAS method described in APHA (1980). The results indicate that LAS was the most toxic detergent to fish relative to the other types and the other of toxicity was LAS > AOS > SS > BAS. A significant correlation was seen between observed and calculated mortalities for all the detergents. Some behavioural responses of fishes to all detergents were also observed.
Resumo:
The toxicity of methyl amine was studied by finding out its LC 50 values for Catla catla fingerlings. On the basis of LC 50 values, the harmless concentration of methyl amine was found to be 12.8 ppm. This indicates that methyl amine is fairly toxic to C. catla fingerlings and needs care for its disposal in aquatic environment.
Resumo:
The marine environment near Karachi, particularly the Baba channel, Chari Kundi channel and Manora channel have been found contaminated with industrial effluents discharged by Malir and Lyari rivers, since they carry a high concentration of toxic heavy metals viz. Pb, Zn, Cu and Mn emanating from the industrial area and are received and discharged by the Lyari river. Out of 60 seawater samples collected from the above mentioned areas, Pb was present in 55 samples and Zn in 58 samples. The concentration of Pb was between 0.04 and 59.2ppm and the concentration of Zn was between 0.05 and 1.9ppm. Similarly all the 60 sludge samples collected from Lyari outfall and its adjoining area have been found to contain Pb and Zn in alarmingly high concentratios, which for Pb was between 15.4 and 3209.9ppm while for Zn was between 87 and 111.3ppm. Cu and Mn were also found in all the above samples.
Resumo:
Microalgae play an important role in conditioning water quality for penaeid larval culture. Recently it has been demonstrated that a modification of the green water larval culture system (Ling, 1969) for Macrobrachium allows the production of post larvae without any water change, despite extensive use of artificial feeds (Ang and Cheah, 1986). Increase of toxic metabolites such as ammonia and nitride are also common in penaeid larval culture, especially where excessive amounts of artifial feeds are employed. Present work examines the use of six marine microalgae at four cell concentrations as a "biological filter" system, to control and detoxify levels of ammonia and nitrite in P. monodon larval culture water whilst using artificial diet. Preliminary results indicate that amongst the six algal species tested, C. japonica at 1000 cell μlˉ¹ was most effective in reducing accumulated toxic metabolites from an unchanged culture water environment.
Resumo:
Preliminary toxicity trials conducted with "Algistat" (an algicide) indicated that a dose of 0,66ppm of the compound was highly toxic to fish and 0.8ppm was the general lethal level for Spirogyra sp. The blue green algae, Oscillatoria sp., Mycrocystis sp. and Anabaena sp. were adversely affected by dosages higher than 0.5 ppm Euglena sp. was not affected even at 1.0 ppm.
Resumo:
The palatability of various organs (body wall, cuvierian gland, viscera, longitudinal muscle bands and gonads) of sea cucumber Holothuria leucospilota (Brandt) was studied by feeding experiments, performed on a freshwater fish Sarotherodon mossambicus and a marine fish Therapon jarbua. The result shows that the food pellets of the body wall were less toxic and more palatable than the gonads, viscera and cuvierian gland (p<0.001).
Resumo:
Static bioassays were performed to observe the toxic effect of malathion to Barbodes gonionotus at 0.0 to 20.0 ppm concentrations. Malathion at 5.0 ppm was harmless to B. gonionotus and concentrations above 6.0 ppm were found to be lethal. Malathion at 2.06 ppm was safe for the B. gonionotus.