937 resultados para tåg
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cellulose can be obtained from innumerable sources such as cotton, trees, sugar cane bagasse, wood, bacteria, and others. The bacterial cellulose (BC) produced by the Gram-negative acetic-acid bacterium Acetobacter xylinum has several unique properties. This BC is produced as highly hydrated membranes free of lignin and hemicelluloses and has a higher molecular weight and higher crystallinity. Here, the thermal behavior of BC, was compared with those of microcrystalline (MMC) and vegetal cellulose (VC). The kinetic parameters for the thermal decomposition step of the celluloses were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and at heating rates of 5, 10, and 20 A degrees C/min, the E(alpha) and B(alpha) terms could be determined and consequently the pre-exponential factor A(alpha) as well as the kinetic model g(alpha). The pyrolysis of celluloses followed kinetic model g(alpha) = [-ln(1 - alpha)](1.63) on average, characteristic for Avrami-Erofeev with only small differences in activation energy. The fractional value of n may be related to diffusion-controlled growth, or may arise from the distributions of sizes or shapes of the reactant particles.
Resumo:
The non-isothermal data given by TG curves for poly(3-hydroxybutyrate) (PHB) were studied in order to obtain a consistent kinetic model that better represents the PHB thermal decomposition. Thus, data obtained from the dynamic TG curves were suitably managed in order to obtain the Arrhenius kinetic parameter E according to the isoconversional F-W-O method. Once the E parameters is found, a suitable logA and kinetic model (f(alpha)) could be calculated. Hence, the kinetic triplet (E +/- SD, logA +/- SD and f(alpha)) obtained for the thermal decomposition of PHB under non-isothermal conditions was E=152 +/- 4 kJ mol(-1), logA=14.1 +/- 0.2 s(-1) for the kinetic model, and the autocatalytic model function was: f(alpha)=alpha(m)(1-alpha)(n)=alpha(0.42)(1-alpha)(0.56).
Resumo:
The dehydration, thermal decomposition and transition phase stage of Zn(II)-diclofenac compound were studied by simultaneous TG-DTA and DSC techniques. The TG and DSC curves of this compound were obtained with the mass of sample of 2 and 5 mg. Additionally, DSC curves were carried out in opened and closed alpha-alumina pans under static and nitrogen atmosphere. The DTA and DSC curves show that this compound possesses exothermic transition phase between 170-180 degrees C, which it is irreversible (monotropic reaction) The kinetics study of this transition phase stage was evaluated by DSC under non-isothermal conditions. The obtained data were evaluated with the isoconversional method, where the values of activation energy (E(a) / kJ mol(-1)) was plotted in function of the conversion degree (alpha). The results show that due to mass sample, different activation energies were obtained From these curves a tendency can be seen where the plots maintain the same profile for closed lids and almost run parallel to each other.
Resumo:
The Co(II)-diclofenac complex was evaluated by simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC). The DTA curve profile shows one exothermic peak because of the transition phase of the compound between 170 and 180 A degrees C, which was confirmed by X-ray powder diffractometry. The transition phase behavior was studied by DSC curves at several heating rates of a sample mass between 1 and 10 mg in nitrogen atmosphere and in a crucible with and without a lid. Thus, the kinetic parameters were evaluated using an isoconversional non-linear fitting proposed by Capela and Ribeiro. The results show that the activation energy and pre-exponential factor for the transition phase is dependant on the different experimental conditions. Nevertheless, these results indicate that the kinetic compensation effect shows a relationship between them.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)