985 resultados para soybean produtivity
Resumo:
Fungi require special substrates for their isolation, vegetative growth and sporulation. In experiments conducted in the laboratory, the influence of substrates, light, filter paper and pH on the sporulation of Cercospora sojina conidia, the causal agent of soybean frogeye leaf spot, was assessed. The media potato sucrose agar, V-8 agar, tomato extract agar, soybean leaf extract agar, soybean seed extract agar, soybean meal agar, soybean flour agar and wheat flour agar were tested, added on the surface, with and without filter paper and under two light regimes, with 12 h light at 25°± 2°C and in the dark. A triple factorial 8x2x2 (substrates x light/dark x with/without filter paper) design with four replicates was used. V-8 agar medium was employed and the pH was adjusted with HCl 0.1N or NaOH 0.1N before autoclaving to the values: 3, 4, 5, 6, 7 and 8, and the pH of V-8 agar medium is 6.7. The evaluation was done on the seventh day of incubation. Data underwent regression analysis. Sporulation was maximized on the agar media V-8, seed extract, oat flour, tomato extract, and potato sucrose in the presence of filter paper and 12h light. On V-8 medium, maximal sporulation was obtained with pH 6.7.
Resumo:
In in vivoexperiments the sensitivity of 18 isolates of Phakopsora pachyrhizifrom several regions of Brazil to IDM fungicides (cyproconazole, epoxiconazole and tebuconazole and an IQE (pyraclostrobin) were evaluated. The assessments were based on leaflet uredia density. Inhibitory concentration (IC50) and sensitivity reduction factor were determined for all fungicide x strain interactions. Tebuconazole sensitivity reduction was detected for most fungus isolates. In contrast, there was no fungicide shift in sensitivity of the fungus to pyraclostrobin. We conclude that the control failure of soybean rust found in some farms is due to the reduced sensitivity of the fungus to the IDM fungicide and that it remains sensitive to pyraclostrobin.
Resumo:
In vitro experiments were conducted to assess the effects of substrate, temperature and time of exposure to temperature and photoperiod on P. pachyrhizi uredospore germination and germ tube growth. The following substrates were tested: water-agar and soybean leaf extract-agar at different leaf concentrations (0.5, 1.0, 2.0 and 4.0 g of leaves and 15g agar/L water), temperatures (10, 15, 20, 25, 30, and 35oC) and times of exposure (1, 2, 3, 4, 5, 6, 7, and 8 hours) to temperature and 12 different photoperiods. The highest germination and germ tube length was found for the soybean leaf extract agar. Maximum P. pachyrhizi uredospore germination was obtained at 21.8 and 22.3°C, and maximum germ tube growth at 21.4 and 22.1°C. The maximum uredospore germination was found at 6.4 hours exposure, while the maximum germ tube length was obtained at 7.7 h exposure. Regarding photoperiod, the maximum spore germination and the maximum uredospore germ tube length were found in the dark. Neither spore germination nor uredospore germ tube growth was completely inhibited by the exposure to continuous light.
Resumo:
The understanding of unsaturated soil water flow at process-level is essential to develop proper management actions for environmental protection in agricultural systems. One important tool for simulation of soil water flow that has been used worldwide is the SWAP model. The aim of this work was to test and to calibrate the SWAP model by inverse modeling to describe moisture profiles in a Brazilian very clayey Latossol in Dourados, State of Mato Grosso do Sul, Brazil. The SWAP model was tested in an experimental field of 0.09 ha cultivated with soybean and soil profiles were sampled eight times between December 2006 and October 2007. The SWAP input values (i.e. soil water retention curves and meteorological data) were based on in-situ measurements. Simulations with uncalibrated soil water retention curves resulted in moisture profiles that were too wet for almost all sampling dates, in particular between 0-10 cm depth. After calibration of soil water retention curves, there was a good improvement in the simulated moisture profiles, which were within the range of measured values for almost all depths and sampling dates.
Resumo:
Banana is the most consumed fruit in the world and Brazil is the second largest producer. Despite its global position, Brazil has an average of 40% losses during the post-harvest period. So, this experiment aimed at evaluating the efficiency of post-harvest treatments to improve the storage of banana cultivars cv. 'Prata', 'Maçã' and 'Nanica'. The fruits were acquired at CEASA with green peel, and were submitted to six different treatments: T- immersion in drinking water for 3 minutes (control), H3 - hot water (50 °C for 3 minutes), H8 - hot water (50 °C for 8 minutes), HP - immersion in hypochlorite 0.2% for 3 minutes, OS - immersion in soybean oil 10% for 3 minutes, and OM - immersion in mineral oil 10% for 3 minutes. The fruits were stored at room temperature at about 21 °C for 14 days and evaluated in three periods (1, 7 and 14 days) comparing peel color, flesh/peel ratio, titratable acidity (TA), soluble solids (SS), SS/TA ratio, and pH. The fruits of cv. 'Prata' and 'Maçã' submitted to the treatments H3, H8 and HP ripened at the same time as the control for peel color, which showed increased soluble solids, flesh/peel ratio, acidity and a decrease in pH. On the other hand, the cv. 'Nanica' did not respond significantly different when compared to the applied treatments and the control. The fruits treated with OM and OS were kept green for a longer time for the cultivars 'Prata' and 'Nanica', but there were some changes on peel color due dark spots in 'Prata' banana and a softening aspect in 'Nanica', indicating some level of toxicity of these treatments. Fruits of the 'Maçã' cultivar continued green with the application of mineral oil, without toxicity symptoms. In conclusion, the treatments applied did not show any advantage for storage of these fruits.
Resumo:
If inappropriately conducted, management and sowing practices may compromise the environment and the profitability of the agricultural activity. The aim of this study was to analyze the furrow opener mechanisms action and the level of load applied to soil firming mechanism in no-till, on the Oxisol resistance to penetration during soybean sowing, under three soil moistures. The experiment was arranged in split-split plot design, in which the plots were composed by three soil moistures (23.8; 25.5 and 27.5% b.s.), two furrow opener mechanisms sub-plots (double disks and furrow plough) and the split-split plot of three levels of load applied to soil firming mechanism (12.2; 18.5 and 24.1 kPa), according to randomized blocks design, with three replications. The soil moisture provided different resistance behavior to penetration with the depth, on the seedbed, independently of the furrow opener and the level of load applied to soil firming mechanism. The furrow plough use provided less soil resistance to penetration when compared to the double disk furrow opener, on the seedbed, independently of the soil moisture and the level of load applied to soil firming mechanism. The pressure applied by soil firming mechanism of 18.5 kPa provided the lower resistance to penetration, when the furrow plough was used. The soil resistance to penetration was less on the sowing line than on between rows, with 20 cm deep.
Resumo:
The aim of this study was to evaluate different spray nozzles for land applications in high speed on the coverage and deposit in soybean plants pulverization. It was evaluated the AXI 110 04 plane jet nozzles operated at speed of 4.17m.s-1 (control), the grey APE and the AXI 110 08 plane jets, and the TD HiSpeed 110 06 and AXI TWIN 120 06 twin jets, at speed of 9.72m.s-1. The application volume was fixed in 120L ha-1. The application efficiency was evaluated by two different methods: analysis of the coverage area using fluorescent pigment and UV light and analysis of deposits through the recovery and quantification of FD&C N°1 brilliant blue marker by spectrophotometry. Both analyses were done in samples collected from top, middle and bottom parts of the plants. The spray nozzles showed differences in coverage and deposit pattern, so in the top part, the coverage was increased with smaller drops and the deposits were increased with medium drops. In the other parts of the plants, there were no statistical differences between the treatments for both coverage and deposits. The displacement speed did not influence the application efficiency for nozzles with the same drop pattern, and the obtained spray coverage and deposits at the medium and bottom parts of the plants were less than 50% of that found at the top of the soybean plants.
Resumo:
The existence of a minimum storage capacity of grains as a condition for the maintenance of regulator physical stocks has been used as a strategic factor in the agribusiness expansion. However, in Brazil the storage infrastructure has not followed the growth of the agricultural sector. This fact is evident in the case of soybeans that currently represent 49% of grain production in the country, whose volume production has been increasing significantly over the years. This study aimed to predict the futureï needs of static storage capacity of soybeans from historical data to estimate the investment needed to install storage units in Brazil for the next five years. A statistic analysis of collected data allowed a forecast and identification of the number of storage units that should be installed to meet the storage needs of soybeans in the next five years. It was concluded that by 2015 the soybean storage capacity should be 87 million tons, and to store 49% of soybeans produced, 1,104 storage units should be installed at a cost of R$ 442 million.
Resumo:
Focal symmetrical encephalomalacia (FSE) is the most prominent lesion seen in the chronic form of enterotoxemia by Clostridium perfringens type D. This paper reports FSE in sheep in Brazil. Six deaths occurred within a seven days period in a flock of 70, four to 30-month-old Santa Inês sheep in the state of Paraíba in the Brazilian semiarid. The flock was grazing a paddock of irrigated sprouting Cynodon dactylon (Tifton grass), and supplemented, ad libitum, with a concentrate of soybean, corn and wheat. Nervous signs included blindness and recumbence. A 19 month-old sheep was examined clinically and necropsied after a clinical course of three days. Gross lesions were herniation of the cerebellar vermis and multifocal, bilateral, symmetric brownish areas in the internal capsule, thalamus and cerebellar peduncles. Histologic lesions were multifocal, bilateral malacia with some neutrophils, swelling of blood vessels endothelium, perivascular edema, and hemorrhages. The flock was vaccinated, before the outbreak, with only one dose of Clostridium perfringens type D vaccine. Two factors are suggested to be important for the occurrence of the disease: insufficient immunity due to the incorrect vaccination; and high nutritional levels by the supplementation with highly fermentable carbohydrates.
Resumo:
The Bradyrhizobium japonicun strains SEMIA 5073, SEMIA 5074, SEMIA 5079 and SEMIA 5080 were grown in vitro using Vincent medium combined with different rates of the herbicides imazaquin (0, 0.04, 0.12, 0.24, 0.36 mg a.i. g-1), clomazone (0, 0.4, 0.8, 1.6 and 3.2 mg a.i. g-1) and sulfentrazone (0, 0.2, 0.4, 0.8 and 1.6 mg a.i. g-1) to evaluate the strains tolerance to herbicides. The three herbicides drastically inhibited all the rhizobium strains tested, showing a significant decrease of the CFU number as a function of herbicide rates. The rhizobium strains presented a differentiated tolerance to the herbicides. The herbicide rates that reduced 50% (I50) of the growth or survival of the rhizobium strains were below the recommended sprayed rates for weed control in the soybean crop, for all the three herbicides studied; however, sulfentrazone I50 was smaller than imazaquin and clomazone I50.
Resumo:
Biodegradation of glyphosate was evaluated in rhizospheric soil cultivated with Glycine max (soybean, var. BRS245-RR), Canavalia ensiformis and Stizolobium aterrimum. After these species were cultivated for 60 days, soil samples were collected, placed in flasks and treated with 14C-glyphosate. After 30 days of incubation, the total release rate of C-CO2 was determined along with microbial biomass (MBC), metabolic quotient (qCO2), and degradation percentage of the radio-labeled glyphosate released as 14C-CO2. A higher mass of rhizosphere-associated microorganisms was verified in the soil samples from pots cultivated with soybean, regardless of glyphosate addition. However, in the presence of the herbicide, this characteristic was the most negatively affected. Microorganisms from the C. ensiformis rhizosphere released a lower amount of 14C-CO2, while for those originated from S. aterrimum, the amount released reached 1.3% more than the total carbon derived from the respiratory activity. The rhizospheric soil from S. aterrimum also presented higher glyphosate degradation efficiency per microbial biomass unit. However, considering qCO2, the microbiota of the rhizospheric soil cultivated with soybean was more efficient in herbicide degradation.
Resumo:
A better method for determination of shikimate in plant tissues is needed to monitor exposure of plants to the herbicide glyphosate [N-(phosphonomethyl)glycine] and to screen the plant kingdom for high levels of this valuable phytochemical precursor to the pharmaceutical oseltamivir. A simple, rapid, and efficient method using microwave-assisted extraction (MWAE) with water as the extraction solvent was developed for the determination of shikimic acid in plant tissues. High performance liquid chromatography was used for the separation of shikimic acid, and chromatographic data were acquired using photodiode array detection. This MWAE technique was successful in recovering shikimic acid from a series of fortified plant tissues at more than 90% efficiency with an interference-free chromatogram. This allowed the use of lower amounts of reagents and organic solvents, reducing the use of toxic and/or hazardous chemicals, as compared to currently used methodologies. The method was used to determine the level of endogenous shikimic acid in several species of Brachiaria and sugarcane (Saccharum officinarum) and on B. decumbens and soybean (Glycine max) after treatment with glyphosate. The method was sensitive, rapid and reliable in all cases.
Resumo:
The continuous use of ALS-inhibiting herbicides has led to the evolution of herbicide-resistant weeds worldwide. Greater beggarticks is one of the most troublesome weeds found in the soybean production system in Brazil. Recently, a greater beggarticks biotype that is resistant (R) to ALS inhibitors due to Trp574Leu mutation in the ALS gene was identified. Also, the adaptive traits between susceptible (S) and R to ALS inhibitors biotypes of greater beggarticks were compared. Specifically, we aimed to: (1) evaluate and compare the relative growth rates (RGR) between the biotypes; (2) analyze the seed germination characteristics of R and S biotypes under different temperature conditions; and (3) evaluate their competitive ability in a replacement series study. The experiments were conducted at the University of Arkansas, USA, in 2007 and at Universidade Federal do Rio Grande do Sul (Federal University of Rio Grande do Sul), Brazil, in 2008. Plant proportions for replacement series studies were respectively 100:0, 75:25, 50:50, 25:75 and 0:100, with a total population of 150 plants m-2. There was no difference in RGR between R and S biotypes. The R-biotype germination rate was lower than that of the S biotype. However, at low temperature conditions (15 ºC), the reverse was observed. In general, there is no difference in the competitive ability between R and S greater beggarticks biotypes.
Resumo:
Several tools of precision agriculture have been developed for specific uses. However, this specificity may hinder the implementation of precision agriculture due to an increasing in costs and operational complexity. The use of vegetation index sensors which are traditionally developed for crop fertilization, for site-specific weed management can provide multiple utilizations of these sensors and result in the optimization of precision agriculture. The aim of this study was to evaluate the relationship between reflectance indices of weeds obtained by the GreenSeekerTM sensor and conventional parameters used for weed interference quantification. Two experiments were conducted with soybean and corn by establishing a gradient of weed interference through the use of pre- and post-emergence herbicides. The weed quantification was evaluated by the normalized difference vegetation index (NDVI) and the ratio of red to near infrared (Red/NIR) obtained using the GreenSeekerTM sensor, the visual weed control, the weed dry matter, and digital photographs, which supplied information about the leaf area coverage proportions of weed and straw. The weed leaf coverage obtained using digital photography was highly associated with the NDVI (r = 0.78) and the Red/NIR (r = -0.74). The weed dry matter also positively correlated with the NDVI obtained in 1 m linear (r = 0.66). The results indicated that the GreenSeekerTM sensor originally used for crop fertilization could also be used to obtain reflectance indices in the area between rows of crops to support decision-making programs for weed control.
Resumo:
Eleusine indica (goosegrass) is a diploid grass weed which has developed resistance to ACCase inhibitors during the last ten years due to the intensive and frequent use of sethoxydim to control grass weeds in soybean crops in Brazil. Plant dose-response assays confirmed the resistant behaviour of one biotype obtaining high resistance factor values: 143 (fenoxaprop), 126 (haloxyfop), 84 (sethoxydim) to 58 (fluazifop). ACCase in vitro assays indicated a target site resistance as the main cause of reduced susceptibility to ACCase inhibitors. PCR-generated fragments of the ACCase CT domain of the resistant and sensitive reference biotype were sequenced and compared. A point mutation was detected within the triplet of aspartate at the amino acid position 2078 (referred to EMBL accession no. AJ310767) and resulted in the triplet of glycine. These results constitute the first report on a target site mutation for a Brazilian herbicide resistant grass weed.