956 resultados para soil organic partition coefficients


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extraction and separation of Ho, Y, and Er(III) with the mixtures of bis(2,4,4-trimetylpentyl)monothiophosphinic acid (Cyanex 302) and another organic extractant, such as acidic organic extractant (di-2-ethylhexyl phosphoric acid P204, 2-ethythexyl phosphoric acid mono-2-ethylhexyl ester P507, di-2-ethylhexyl phosphinic acid P229, and sec-nonylphenoxy acetic acid CA-100), neutral organic extractant (tri-n-butyl phosphate TBP, di-(1-metylheptyl)metyl phosphate P350, and branched trialkylphosphinic oxide Cyanex 925) or primary amine N1923, has been investigated in this paper. The extractability and separation ability for the Ho, Y, and Er with the mixtures of Cyanex 302 and organic extractants has been compared. The synergistic effect of the Ho, Y, and Er extraction with the mixtures of Cyanex 302 and P229, Cyanex 925, CA-100, or N1923 has been explored and the synergistic enhancement coefficients have been calculated. At last, the Y3+ synergistic extraction with the mixtures of Cyanex 302 and CA-100 has been determined and the extracted complex has been deduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unique sol-gel enzyme electrode for inert organic solvents is developed that is based on the partition equilibrium of the substrate between water-organic solvent media and the enzyme membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of benzoic acid, thiourea and 2-mercaptoethanol in three pure organic solvents, viz., chloroform, chlorobenzene and 1,2-dichlorobenzene, by using an amperometric cryohydrogel tyrosinase biosensor is described. Measurements were carried out with phenol as the enzyme substrate. Kinetic parameters (K-i and I-50) were determined in the three solvents for various inhibitors. The sensor showed the most sensitive measurements to these inhibitors in pure chloroform. The solvent-induced deviation of the biosensor to thiourea was evaluated by means of Hill coefficients. The smallest deviation as observed in 1,2-dichlorobenzene, owing to the high hydrophobicity of this solvent. The nature of the inhibition process and its reversibility mere also examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pre-column derivatization method for the sensitive determination of aliphatic amines using the labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by HPLC with fluorescence detection and APCI/NIS identification in positive-ion mode has been developed. The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by the 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent, BCEOC, that could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M + H](+) with APCI/MS in positive-ion mode. The collision induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 264.1, m/z 246.0 and m/z 218.1, corresponding to the cleavages of CH2CH2O-CO, CH2CH2-OCO, and N-CH2CH2O bonds. Studies on derivatization conditions demonstrated that excellent derivatization yields close to 100% were observed with a 3 to 4-fold molar reagent excess in acetonitrile solvent, in the presence of borate buffer (pH 9.0) at 40 degrees C for 10 min. In addition, the detection responses for BCEOC derivatives were compared with those obtained with CEOC and FMOC as labeling reagents. The ratios I-BCEOC/I-CEOC and I-BCEOC/I-FMOC were, respectively, 1.40-2.76 and 1.36-2.92 for fluorescence responses (here, I was the relative fluorescence intensity). Separation of the amine derivatives had been optimized on an Eclipse XDB-C-8 column. Detection limits calculated from an 0.10 pmol injection, at a signal-to-noise ratio of 3, were 18.65-38.82 fmol (injection volume 10 mu L for fluorescence detection. The relative standard deviations for intraday determination (n = 6) of standard amine derivatives (50 pmol) were 0.0063-0.037% for retention times and 3.36-6.93% for peak areas. The mean intra-and inter-assay precision for all amines were <5.4% and 5.8%, respectively. The recoveries of amines ranged from 96 to 113%. Excellent linear responses were observed with correlation coefficients of >0.9994. The established method provided a simple and highly sensitive technique for the quantitative analysis of trace amounts of aliphatic amines from biological and natural environmental samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensitive method for the determination of 30 kinds of free fatty acids (FFAs, C-1-C-30) with 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4,5-f] 9,10-phenan- threne (TSPP) as labeling reagent and using high performance liquid chromatography with fluorescence detection and identification by online postcolumn mass spectrometry with atmospheric pressure chemical ionization (APCI) source in positive-ion mode (HPLC/MS/APCI) has been developed. TSPP could easily and quickly label FFAs in the presence of K2CO3 catalyst at 90 degrees C for 30 min in N,N-dimethylformamide (DMF) solvent, and maximal labeling yields close to 100% were observed with a 5-fold excess of molar reagent. Derivatives were stable enough to be efficiently analyzed by high performance liquid chromatography. TSPP was introduced into fatty acid molecules and effectively augmented MS ionization of fatty acid derivatives and led to regular MS and MS/MS information. The collision induced cleavage of protonated molecular ions formed specific fragment ions at m/z [MH](+)(molecular ion), m/z [M'+CH2CH2](+)(M' was molecular mass of the corresponding FFA) and m/z 295.0 (the, mass of protonated molecular core structure of TSPP). Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C-8 column (4.6 x 150 mm, 5 mu m, Agilent) with a good baseline resolution in combination with a gradient elution. Linear ranges of 30 FFAs are 2.441 x 10(-3) to 20 mu mol/L, detection limits are 3.24 similar to 36.97 fmol (injection volume 10 mu L, at a signal-to-noise ratio of 3, S/N 3:1). The mean interday precision ranged from 93.4 to 106.2% with the largest mean coefficients of variation (R.S.D.) < 7,5%. The mean intraday precision for all standards was < 6.4% of the expected concentration. Excellent linear responses were observed with correlation coefficients of > 0.9991. Good compositional data could be obtained from the analysis of extracted fatty acids from as little as 200 mg of bryophyte plant samples.Therefore, the facile TSPP derivatization coupled with HPLC/MS/APCI analysis allowed the development of a highly sensitive method for the quantitation of trace levels of short and long chain fatty acids from biological and natural environmental samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was the objective of this study to compare the suitability of different extractants for predicting the availability of sulfur (S) in natural grassland in a sulfur response trial on three different soil types in the Inner Mongolia steppe of China. For soil analysis, seven different extractants have been employed. The inorganic SO4-S concentration was determined by ion chromatography. Additionally, in the Ca(H-2-PO4)(2) extract the total soluble S was determined employing turbidimetry. Weak salt solutions (0.15% CaCl2, Ca(H2PO4)(2), and KH2PO4) extracted similar amounts Of SO4-S. Extraction with 0.025 M KCl provided the lowest SO4-S values. Deionized water dissolved significantly more SO4-S in the control plots than most weak salt extractants. The concentration of soluble organic S decreased in the control plots after 100 days of plant growth, indicating that the organic S pool contributed significantly to the S nutrition of the forage crops. Significant relationships among the SO4-S in the soil determined in different extracts and crop yield, sulfur content in the forage, and total sulfur uptake were only found for the Ca(H2PO4)(2) extract. In general, the correlation coefficients proved to be unsatisfactory for field experimentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elliott, G. N., Worgan, H., Broadhurst, D. I., Draper, J. H., Scullion, J. (2007). Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm-based feature selection. Soil Biology & Biochemistry, 39 (11), 2888-2896. Sponsorship: BBSRC / NERC RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the ancient and acidic Ultisol soils of the Southern Piedmont, USA, we studied changes in trace element biogeochemistry over four decades, a period during which formerly cultivated cotton fields were planted with pine seedlings that grew into mature forest stands. In 16 permanent plots, we estimated 40-year accumulations of trace elements in forest biomass and O horizons (between 1957 and 1997), and changes in bioavailable soil fractions indexed by extractions of 0.05 mol/L HCl and 0.2 mol/L acid ammonium oxalate (AAO). Element accumulations in 40-year tree biomass plus O horizons totaled 0.9, 2.9, 4.8, 49.6, and 501.3 kg/ha for Cu, B, Zn, Mn, and Fe, respectively. In response to this forest development, samples of the upper 0.6-m of mineral soil archived in 1962 and 1997 followed one of three patterns. (1) Extractable B and Mn were significantly depleted, by -4.1 and -57.7 kg/ha with AAO, depletions comparable to accumulations in biomass plus O horizons, 2.9 and 49.6 kg/ha, respectively. Tree uptake of B and Mn from mineral soil greatly outpaced resupplies from atmospheric deposition, mineral weathering, and deep-root uptake. (2) Extractable Zn and Cu changed little during forest growth, indicating that nutrient resupplies kept pace with accumulations by the aggrading forest. (3) Oxalate-extractable Fe increased substantially during forest growth, by 275.8 kg/ha, about 10-fold more than accumulations in tree biomass (28.7 kg/ha). The large increases in AAO-extractable Fe in surficial 0.35-m mineral soils were accompanied by substantial accretions of Fe in the forest's O horizon, by 473 kg/ha, amounts that dwarfed inputs via litterfall and canopy throughfall, indicating that forest Fe cycling is qualitatively different from that of other macro- and micronutrients. Bioturbation of surficial forest soil layers cannot account for these fractions and transformations of Fe, and we hypothesize that the secondary forest's large inputs of organic additions over four decades has fundamentally altered soil Fe oxides, potentially altering the bioavailability and retention of macro- and micronutrients, contaminants, and organic matter itself. The wide range of responses among the ecosystem's trace elements illustrates the great dynamics of the soil system over time scales of decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential of employing zinc polycarboxylate dental cement as a controlled release material has been studied. Benzalkonium chloride was used as the active ingredient, and incorporated at concentrations of 1, 2 and 3% by mass within the cement. At these levels, there was no observable effect on the speed of setting. Release was followed using an ion-selective electrode to determine changes in chloride ion concentration with time. This technique showed that the additive was released when the cured cement was placed in water, with release occurring by a diffusion mechanism for the first 3 h, but continuing beyond that for up to 1 week. Diffusion coefficients were in the range 5.62 × 10(−6) cm(2) s(−1) (for 1% concentration) to 10.90 × 10(−6) cm(2) s(−1) (for 3% concentration). Up to 3% of the total loading of benzalkonium chloride was released from the zinc polycarboxylate after a week, which is similar to that found in previous studies with glass-ionomer cement. It is concluded that zinc polycarboxylate cement is capable of acting as a useful material for the controlled release of active organic compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The watersheds at Bear Creek, Oak Ridge, TN, have similar soil–landscape relationships. The lower reaches of many of these watersheds consist of headwater riparian wetlands situated between sloping non-wetland upland zones. The objectives of this study are to examine the effects of (i) slope and geomorphic processes, (ii) human impacts, and (iii) particular characteristics of soils and saprolite that may effect drainage and water movement in the wetlands and adjacent landscapes in one of these watersheds. A transect was run from west to east in a hydrological monitored area at the lower reaches of a watershed on Bear Creek. This transect extended from a steep side slope position across a floodplain, a terrace, and a shoulder slope. On the upland positions of the Nolichucky Shale, mass wasting, overland flow and soil creep currently inhibit soil formation on the steep side slope position where a Typic Dystrudept is present, while soil stability on the shoulder slope has resulted in the formation of a well-developed Typic Hapludult. In these soils, argillic horizons occur above C horizons on less sloping gradients in comparison to steeper slopes, which have Bw horizons over Cr (saprolite) material. A riparian wetland area occupies the floodplain section, where a Typic Endoaquept is characterized by poorly drained conditions that led to the development of redoximorphic features (mottling), gleying, organic matter accumulation, and minimal development of subsurface horizons. A thin colluvial deposit overlies a thick well developed Aquic Hapludalf that formed in alluvial sediments on the terrace position. The colluvial deposit from the adjacent shoulder slope is thought to result from soil creep and anthropogenic erosion caused by past cultivation practices. Runoff from the adjacent sloping landscape and groundwater from the adjacent wetland area perhaps contribute to the somewhat poorly drained conditions of this profile. Perched watertables occur in upland positions due to dense saprolite and clay plugging in the shallow zones of the saprolite. However, no redoximorphic features are observed in the soil on the side slope due to high runoff. Remnants of the underlying shale saprolite, which occur as small discolored zones resembling mottles, are also present. The soils in the study have a CEC of

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical oxidation of 1-butyl-3-methylimidazolium nitrate [C(4)mim][NO3] was studied by cyclic voltammetry in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [C(2)mim][NTf2]. A sharp peak was observed on a Pt microelectrode (d = 10 mu m), and a diffusion coefficient at infinite dilution of ca. 2.0 x 10(-11) m(2) s(-1) was obtained. Next, the cyclic voltammetry of sodium nitrate (NaNO3) and potassium nitrate (KNO3) was studied, by dissolving small amounts of solid into the RTIL [ C2mim][ NTf2]. Similar oxidation peaks were observed, revealing diffusion coefficients of ca. 8.8 and 9.0 x 10(-12) m(2) s(-1) and solubilities of 11.9 and 10.8 mM for NaNO3 and KNO3, respectively. The smaller diffusion coefficients for NaNO3 and KNO3 (compared to [C(4)mim][NO3]) may indicate that NO3- is ion-paired with Na+ or K+. This work may have applications in the electroanalytical determination of nitrate in RTIL solutions. Furthermore, a reduction feature was observed for both NaNO3 and KNO3, with additional anodic peaks indicating the formation of oxides, peroxides, superoxides and nitrites. This behaviour is surprisingly similar to that obtained from melts of NaNO3 and KNO3 at high temperatures ( ca. 350 - 500 degrees C), and this observation could significantly simplify experimental conditions required to investigate these compounds. We then used X-ray photoelectron spectroscopy (XPS) to suggest that disodium( I) oxide (Na2O), which has found use as a storage compound for hydrogen, was deposited on a Pt electrode surface following the reduction of NaNO3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic solvents are widely used in a range of multiphase bioprocess operations including the liquid-liquid extraction of antibiotics and two-phase biotransformation reactions. There are, however, considerable problems associated with the safe handling of these solvents which relate to their toxic and flammable nature. In this work we have shown for the first time that room-temperature ionic liquids, such as 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], can be successfully used in place of conventional solvents for the liquid-liquid extraction of erythromycin-A and for the Rhodococcus R312 catalyzed biotransformation of 1,3-dicyanobenzene (1,3-DCB) in a liquid-liquid, two-phase system. Extraction of erythromycin with either butyl acetate or [bmim][PF6] showed that values of the equilibrium partition coefficient, K, up to 20-25 could be obtained for both extractants. The variation of K with the extraction pH was also similar in the pH range 5-9 though differed significantly at higher pH values. Biotransformation of 1,3-DCB in both water-toluene and water-[bmim][PF6] systems showed similar profiles for the conversion of 1,3-DCB initially to 3-cyanobenzamide and then 3-cyanobenzoic acid. The initial rate of 3-cyanobenzamide production in the water-[bmim][PF6] system was somewhat lower, however, due to the reduced rate of 1,3-DCB mass transfer from the more viscous [bmim] [PF,] phase. it was also shown that the specific activity of the biocatalyst in the water-[bmim][PF6] system was almost an order of magnitude greater than in the water-toluene system which suggests that the rate of 3-cyanobenzamide production was limited by substrate mass transfer rather than the activity of the biocatalyst. (C) 2000 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhizosphere microorganisms play an important role in soil carbon flow, through turnover of root exudates, but there is little information on which organisms are actively involved or on the influence of environmental conditions on active communities. In this study, a (CO2)-C-13 pulse labelling field experiment was performed in an upland grassland soil, followed by RNA-stable isotope probing (SIP) analysis, to determine the effect of liming on the structure of the rhizosphere microbial community metabolizing root exudates. The lower limit of detection for SIP was determined in soil samples inoculated with a range of concentrations of C-13-labelled Pseudomonas fluorescens and was found to lie between 10(5) and 10(6) cells per gram of soil. The technique was capable of detecting microbial communities actively assimilating root exudates derived from recent photo-assimilate in the field. Denaturing gradient gel electrophoresis (DGGE) profiles of bacteria, archaea and fungi derived from fractions obtained from caesium trifluoroacetate (CsTFA) density gradient ultracentrifugation indicated that active communities in limed soils were more complex than those in unlimed soils and were more active in utilization of recently exuded C-13 compounds. In limed soils, the majority of the community detected by standard RNA-DGGE analysis appeared to be utilizing root exudates. In unlimed soils, DGGE profiles from C-12 and C-13 RNA fractions differed, suggesting that a proportion of the active community was utilizing other sources of organic carbon. These differences may reflect differences in the amount of root exudation under the different conditions.