964 resultados para single-state oxygen
Resumo:
We use QCD sum rules to test the nature of the meson X(3872), assumed to be a mixture between charmonium and exotic molecular [c (q) over bar][q (c) over bar] states with J(PC) = 1(++). We find that there is only a small range for the values of the mixing angle theta that can provide simultaneously good agreement with the experimental value of the mass and the decay width, and this range is 5(0) <= theta <= 3(0). In this range we get m(X) = (3.77 +/- 0.18) GeV and Gamma(X -> J/psi pi(+)pi(-)) = (9.3 +/- 6.9) MeV, which are compatible, within the errors, with the experimental values. We, therefore, conclude that the X(3872) is approximately 97% a charmonium state with 3% admixture of similar to 88% D(0)D*(0) molecule and similar to 12% D(+)D*(-) molecule.
Resumo:
A comparison is made between results obtained using smooth initial conditions and event-by-event initial conditions in the hydrodynamical description of relativistic nuclear collisions. Some new results on directed flow are also included.
Resumo:
Results of proton-proton-gamma coincidence measurements using the (36)S+(9)Be reaction revealed a gamma ray of 201.27 +/- 0.16 keV that most probably corresponds to the transition between the predicted 7/2(-) first excited state to the 5/2(-) ground state of (43)Ar.
Resumo:
We report the first detailed comparisons of the rates and spectra of neutral-current neutrino interactions at two widely separated locations. A depletion in the rate at the far site would indicate mixing between nu(mu) and a sterile particle. No anomalous depletion in the reconstructed energy spectrum is observed. Assuming oscillations occur at a single mass-squared splitting, a fit to the neutral- and charged-current energy spectra limits the fraction of nu(mu) oscillating to a sterile neutrino to be below 0.68 at 90% confidence level. A less stringent limit due to a possible contribution to the measured neutral-current event rate at the far site from nu(e) appearance at the current experimental limit is also presented.
Resumo:
Incoherent eta photoproduction in nuclei is evaluated at forward angles within 4 to 9 GeV using a multiple scattering Monte Carlo cascade calculation with full eta-nucleus final-state interactions. The Primakoff, nuclear coherent and nuclear incoherent components of the cross sections fit remarkably well previous measurements for Be and Cu from Cornell, suggesting a destructive interference between the Coulomb and nuclear coherent amplitudes for Cu. The inelastic background of the data is consistently attributed to the nuclear incoherent part, which is clearly not isotropic as previously considered in Cornell's analysis. The respective Primakoff cross sections from Be and Cu give Gamma(eta ->gamma gamma)=0.476(62) keV, where the quoted error is only statistical. This result is consistent with the Particle Data Group average of 0.510(26) keV and in sharp contrast (similar to 50%) with the value of 0.324(46) keV obtained at Cornell.
Resumo:
The PHENIX experiment has measured the suppression of semi-inclusive single high-transverse-momentum pi(0)'s in Au+Au collisions at root s(NN) = 200 GeV. The present understanding of this suppression is in terms of energy loss of the parent (fragmenting) parton in a dense color-charge medium. We have performed a quantitative comparison between various parton energy-loss models and our experimental data. The statistical point-to-point uncorrelated as well as correlated systematic uncertainties are taken into account in the comparison. We detail this methodology and the resulting constraint on the model parameters, such as the initial color-charge density dN(g)/dy, the medium transport coefficient <(q) over cap >, or the initial energy-loss parameter epsilon(0). We find that high-transverse-momentum pi(0) suppression in Au+Au collisions has sufficient precision to constrain these model-dependent parameters at the +/- 20-25% (one standard deviation) level. These constraints include only the experimental uncertainties, and further studies are needed to compute the corresponding theoretical uncertainties.
Resumo:
Metal-organic materials constitute a new field in which to search for ferroelectricity and coupling between electricity and magnetism. We observe a magnetic field-induced change in the electric polarization, Delta P(H), that reaches 50 mu C/m(2) in single crystals of NiCl(2)-4SC(NH(2))(2) (DTN). DTN forms a tetragonal structure that breaks inversion symmetry with the electrically polar thiourea molecules [SC(NH(2))] all tilted in the same direction along the c axis. The field H induces canted antiferromagnetism of the Ni S = 1 spins between 2 and 12 T and our measurements show that the electric polarization increases monotonically in this range, saturating above 12 T. By modeling the microscopic origin of this magnetoelectric effect, we find that the leading contribution to Delta P comes from the change in the crystal electric field, with a smaller contribution from magnetic exchange striction. The finite value of Delta P induced by magnetostriction results from the polar nature of the thiourea molecules bonded to the Ni atoms, and it is amplified by the softness of these organic molecules.
Resumo:
We investigate the electronic properties of Mn(B) substitutional doping in cubic boron nitride (BN), for different charge states, using density functional theory (DFT) calculations. We show that the neutral Mn has a nonmagnetic ground state (S=0). Upon charge injection, it is unambiguously shown that the Mn(B)(-) has a high-spin configuration with a strong, localized magnetic moment of 5 mu(Bohr). We developed a simple model, parameterized by the DFT results, that allows us to interpret the rules played by the crystal-field and exchange-correlation splitting in the magnetization process.
Resumo:
Previous resistively detected NMR (RDNMR) studies on the nu approximate to 1 quantum Hall state have reported a ""dispersionlike"" line shape and extremely short nuclear-spin-lattice relaxation times, observations which have been attributed to the formation of a skyrme lattice. Here we examine the evolution of the RDNMR line shape and nuclear-spin relaxation for Zeeman: Coulomb energy ratios ranging from 0.012 to 0.036. According to theory, suppression of the skyrme crystal, along with the associated Goldstone mode nuclear-spin-relaxation mechanism, is expected at the upper end of this range. However, we find that the anomalous line shape persists at high Zeeman energy, and only a modest decrease in the RDNMR-detected nuclear-spin-relaxation rate is observed.
Resumo:
The local site symmetry of Ce(3+) ions in the diluted magnetic semiconductors Pb(1-x)Ce(x)A (A=S, Se, and Te) has been investigated by electron-paramagnetic resonance (EPR). The experiments were carried out on single crystals with cerium concentration x ranging from 0.001 to 0.035. The isotropic line due to Ce(3+) ions located at the substitutional Pb cation site with octahedral symmetry was observed for all the studied samples. We determined the effective Lande factors to be g=1.333, 1.364, and 1.402 for A=S, Se, and Te, respectively. The small difference with the predicted Lande factor g of 10/7 for the Gamma(7) (J=5/2) ground state was attributed to crystal-field admixture. In addition, EPR lines from Ce(3+) ions located at sites with small distortion from the original octahedral symmetry were also observed. Two distinct sites with axial distortion along the < 001 > crystallographic direction were identified and a third signal in the spectrum was attributed to sites with the cubic symmetry distorted along the < 110 > direction. The distortion at these distinct Ce sites is attributed to Pb lattice vacancies near the cerium ions that compensate for its donor activity.
Resumo:
Defects in one-dimensional (1D) systems can be intrinsically distinct from its three-dimensional counterparts, and polymer films are good candidates for showing both extremes that are difficult to individuate in the experimental data. We study theoretically the impact of simple hydrogen and oxygen defects on the electron transport properties of one-dimensional poly(para-phenylenevinylene) chains through a multiscale technique, starting from classical structural simulations for crystalline films to extensive ab initio calculations within density functional theory for the defects in single crystalline-constrained chains. The most disruptive effect on carrier transport comes from conjugation breaking imposed by the overcoordination of a carbon atom in the vinyl group independently from the chemical nature of the defect. The particular case of the [C=O] (keto-defect) shows in addition unexpected electron-hole separation, suggesting that the experimentally detected photoluminescence bleaching and photoconductivity enhancement could be due to exciton dissociation caused by the 1D characteristics of the defect.
Resumo:
Electron paramagnetic resonance measurements of NiCl(2)-4SC(NH(2))(2) reveal the low-energy spin dispersion, including a magnetic-field interval in which the two-magnon continuum is within k(B)T of the ground state, allowing a continuum of excitations over a range of k states, rather than only the k=0 single-magnon excitations. This produces a novel Y shape in the frequency-field EPR spectrum measured at T >= 1.5 K. Since the interchain coupling J(perpendicular to)< k(B)T, this shape can be reproduced by a single S=1 antiferromagnetic Heisenberg chain with a strong easy-plane single-ion anisotropy. Importantly, the combination of experiment and modeling we report herein demonstrates a powerful approach to probing spin dispersion in a wide range of interacting magnetic systems without the stringent sample requirements and complications associated with inelastic scattering experiments.
Resumo:
We present density of states and electronic transport calculations of single vacancies in carbon nanotubes. We confirm that the defect reconstructs into a pentagon and a nonagon, following the removal of a single carbon atom. This leads to the formation of a dangling bond. Finally, we demonstrate that care must be taken when calculating the density of states of impurities in one-dimensional systems in general. Traditional treatments of these systems using periodic boundary conditions leads to the formation of minigaps even in the limit of large unit cells.
Resumo:
At zero temperature and strong applied magnetic fields the ground state of an anisotropic antiferromagnet is a saturated paramagnet with fully aligned spins. We study the quantum phase transition as the field is reduced below an upper critical H(c2) and the system enters a XY-antiferromagnetic phase. Using a bond operator representation we consider a model spin-1 Heisenberg antiferromagnetic with single-ion anisotropy in hypercubic lattices under strong magnetic fields. We show that the transition at H(c2) can be interpreted as a Bose-Einstein condensation (BEC) of magnons. The theoretical results are used to analyze our magnetization versus field data in the organic compound NiCl(2)-4SC(NH(2))(2) (DTN) at very low temperatures. This is the ideal BEC system to study this transition since H(c2) is sufficiently low to be reached with static magnetic fields (as opposed to pulsed fields). The scaling of the magnetization as a function of field and temperature close to H(c2) shows excellent agreement with the theoretical predictions. It allows us to obtain the quantum critical exponents and confirm the BEC nature of the transition at H(c2).
Resumo:
We report the first measurement of the parity-violating single-spin asymmetries for midrapidity decay positrons and electrons from W(+) and W(-) boson production in longitudinally polarized proton-proton collisions at root s = 500 GeV by the STAR experiment at RHIC. The measured asymmetries, A(L)(W+) = -0.27 +/- 0.10(stat.) +/- 0.02(syst.) +/- 0.03(norm.) and A(L)(W-) = 0.14 +/- 0.19(stat.) +/- 0.02(syst.) +/- 0.01(norm.), are consistent with theory predictions, which are large and of opposite sign. These predictions are based on polarized quark and antiquark distribution functions constrained by polarized deep-inelastic scattering measurements.