949 resultados para silencing suppressors
Resumo:
Tese de Doutoramento, Ciências Agrárias, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Programa de Pós-Graduação em Saúde Animal, 2011.
Resumo:
Dissertação de Mestrado, Oncobiologia – Mecanismos Moleculares do Cancro, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015
Resumo:
Tese de Doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016
Resumo:
Genome editing is becoming an important biotechnological tool for gene function analysis and crop improvement, being the CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat-CRISPR associated protein 9) system the most widely used. The natural CRISPR/Cas9 system has been reduced to two components: a single-guide RNA (sgRNA) for target recognition via RNA-DNA base pairing, which is commonly expressed using a promoter for small-RNAs (U6 promoter), and the Cas9 endonuclease for DNA cleavage (1). To validate the CRISPR/Cas9 system in strawberry plants, we designed two sgRNAs directed against the floral homeotic gene APETALA3 (sgRNA-AP3#1 and sgRNA-AP3#2). This gene was selected because ap3 mutations induce clear developmental phenotypes in which petals and stamens are missing or partially converted to sepals and carpels respectively (2). In this work, we used two different U6 promoters to drive the sgRNA-AP3s expression: AtU6-26 from Arabidopsis (4), and a U6 promoter from Fragaria vesca (FvU6) (this work). We also tested two different coding sequences of Cas9: a human- (hSpCas9) (3) and a plant-codon optimized (pSpCas9) (this work). Transient expression experiments using both CRISPR/Cas9 systems (AtU6-26:sgRNA-AP3#1_35S:hSpCas9_AtU6-26:sgRNA-AP3#2 and FvU6:sgRNA-AP3#1_35S:pSpCas9_FvU6:sgRNA-AP3#2) were performed infiltrating Agrobacterium tumefaciens into F. vesca fruits. PCR amplification and sequencing analyses across the target sites showed a deletion of 188-189 bp corresponding to the region comprised between the two cutting sites of Cas9, confirming that the CRISPR/Cas9 system is functional in F. vesca. Remarkably, the two systems showed different mutagenic efficiency that could be related to differences in expression of the U6 promoters as well as differences in the Cas9 transcripts stability and translation. Stable transformants for both F. vesca (2n) and Fragaria X anannassa (8n) are currently being established to test whether is possible to obtain heritable homozygous mutants derived from CRISPR/Cas9 strategies in strawberry. Thus, our work offers a promising tool for genome editing and gene functional analysis in strawberry. This tool might represent a more efficient alternative to the sometimes inefficient RNAi silencing methods commonly used in this species.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Departamento de Botânica, Programa de Pós-Graduação em Botânica, 2016.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, 2016.
Resumo:
199 p.
Resumo:
Celebrity participation in humanitarianism and politics has received a lot of attention in recent times. Though many researchers have sought to explain the reasons underlying this phenomenon, there appears to be little information as to the efficacy of these celebrity efforts. The present research thus undertakes an analysis of the celebrity's participation through a study on the effectiveness of the celebrity-led campaign. To achieve this, I conduct a discourse and visual analysis of media publications surrounding two celebrity-led campaigns. The research leans heavy on theories underlining the celebrity mechanism and Street et al's framework on celebrity participation in politics. The study confirms Street et al's argument that performance, legitimacy and organization are central to the success of the celebrity-led campaign. For campaigns aimed at initiating policy change, I propose an additional category of stakeholders' response which provides a means of evaluating efficacy. My findings show that organization, legitimization, stakeholders' response and performance are highly dependent on the actions of the lead celebrity, making these celebrities active agents in the production of discourse on the "third world". As celebrities engage in humanitarian work, they take up positions as representatives of the aid recipient. The result is the dispossession and silencing of the aid recipient. Out of my discussion of these practices evolves the concept of the celebrity burden.
Resumo:
Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.
Resumo:
Tissue mechanics and cellular interactions influence every single cell in our bodies to drive morphogenesis. However, little is known about mechanisms by which cells sense physical forces and transduce them from the cytoskeleton to the nucleus to control gene expression and stem cell fate. We have identified a novel nuclear-mechanosensor complex, consisting of the nuclear membrane protein emerin (Emd), actin and non-muscle myosin IIA (NMIIA), that regulates transcription, chromatin remodeling and lineage commitment. Force-induced enrichment of Emd at the outer nuclear membrane leads to a compensation between H3K9me2,3 and H3K27me3 on constitutive heterochromatin. This strain-induced epigenetic switch is accompanied by the global rearrangement of chromatin. In parallel, forces promote local F-actin polymerization at the outer nuclear membrane, which limits the availability of nuclear G-actin. Subsequently, the reduction of nuclear G-actin results in attenuated global transcription and therefore increased H3K27me3 occupancy to reinforce gene silencing. Restoring nuclear actin levels in the presence of mechanical strain counteracts PRC2-mediated silencing of transcribed genes. This mechanosensory circuit is also observed in vivo. Depletion of NMIIA in mouse epidermis leads to decreased H3K27me3 levels and precocious lineage commitment, thus abrogating organ growth and patterning. Our results reveal how mechanical signals regulate nuclear architecture, chromatin organization and transcription to control cell fate decisions.
Resumo:
Colorectal cancer (CRC) is the third most common cancer in the UK with 41,000 new cases diagnosed in 2011. Despite undergoing potentially curative resection, a significant amount of patients develop recurrence. Biomarkers that aid prognostication or identify patients who are suitable for adjuvant treatments are needed. The TNM staging system does a reasonably good job at offering prognostic information to the treating clinician, but it could be better and identifying methods of improving its accuracy are needed. Tumour progression is based on a complex relationship between tumour behaviour and the hosts’ inflammatory responses. Sustained tumour cell proliferation, evading growth suppressors, resisting apoptosis, replicative immortality, sustained angiogenesis, invasion & metastasis, avoiding immune destruction, deregulated cellular energetics, tumour promoting inflammation and genomic instability & mutation have been identified as hallmarks. These hallmarks are malignant behaviors are what makes the cell cancerous and the more extreme the behaviour the more aggressive the cancer the more likely the risk of a poor outcome. There are two primary genomic instability pathways: Microsatellite Instability (MSI) and Chromosomal Instability (CI) also referred to as Microsatellite Stability (MSS). Tumours arising by these pathways have a predilection for specific anatomical, histological and molecular biological features. It is possible that aberrant molecular expression of genes/proteins that promote malignant behaviors may also act as prognostic and predictive biomarkers, which may offer superior prognostic information to classical prognostic features. Cancer related inflammation has been described as a 7th hallmark of cancer. Despite the systemic inflammatory response (SIR) being associated with more aggressive malignant disease, infiltration by immune cells, particularly CD8+ lymphocytes, at the advancing edge of the tumour have been associated with improved outcome and tumour MSI. It remains unknown if the SIR is associated with tumour MSI and this requires further study. The mechanisms by which colorectal cancer cells locally invade through the bowel remain uncertain, but connective tissue degradation by matrix metalloproteinases (MMPs) such as MMP-9 have been implicated. MMP-9 has been found in the cancer cells, stromal cells and patient circulation. Although tumoural MMP-9 has been associated with poor survival, reports are conflicting and contain relatively small sample sizes. Furthermore, the influence of high serum MMP-9 on survival remains unknown. Src family kinases (SFKs) have been implicated in many adverse cancer cell behaviors. SFKs comprise 9 family members BLK, C-SRC, FGR, FYN, HCK, LCK, LYN, YES, YRK. C-SRC has been the most investigated of all SFKs, but the role of other SFKs in cellular behaviors and their prognostic value remains largely unknown. The development of Src inhibitors, such as Dasatinib, has identified SFKs as a potential therapeutic target for patients at higher risk of poor survival. Unfortunately, clinical trials so far have not been promising but this may reflect inadequate patient selection and SFKs may act as useful prognostic and predictive biomarkers. In chapter 3, the association between cancer related inflammation, tumour MSI, clinicopathological factors and survival was tested in two independent cohorts. A training cohort consisting of n=182 patients and a validation cohort of n=677 patients. MSI tumours were associated with a raised CRP (p=0.003). Hypoalbuminaemia was independently associated with poor overall survival in TNM stage II cancer (HR 3.04 (95% CI 1.44 – 6.43);p=0.004), poor recurrence free survival in TNM stage III cancer (HR 1.86 (95% 1.03 – 3.36);p=0.040) and poor overall survival in CI colorectal cancer (HR 1.49 (95% CI 1.06 – 2.10);p=0.022). Interestingly, MSI tumours were associated with poor overall survival in TNM stage III cancer (HR 2.20 (95% CI 1.10 – 4.37);p=0.025). In chapter 4, the role of MMP-9 in colorectal cancer progression and survival was examined. MMP-9 in the tissue was assessed using IHC and serum expression quantified using ELISA. Serum MMP-9 was associated with cancer cell expression (Spearman’s Correlation Coefficient (SCC) 0.393, p<0.001)) and stromal expression (SCC 0.319, p=0.002). Serum MMP-9 was associated with poor recurrence-free (HR 3.37 (95% CI 1.20 – 9.48);p=0.021) and overall survival (HR 3.16 (95% CI 1.22 – 8.15);p=0.018), but tumour MMP-9 was not survival or MSI status. In chapter 5, the role of SFK expression and activation in colorectal cancer progression and survival was studied. On PCR analysis, although LYN, C-SRC and YES were the most highly expressed, FGR and HCK had higher expression profiles as tumours progressed. Using IHC, raised cytoplasmic FAK (tyr 861) was independently associated with poor recurrence free survival in all cancers (HR 1.48 (95% CI 1.02 – 2.16);p=0.040) and CI cancers (HR 1.50 (95% CI 1.02 – 2.21);p=0.040). However, raised cytoplasmic HCK (HR 2.04 (95% CI 1.11 – 3.76);p=0.022) was independently associated with poor recurrence-free survival in TNM stage II cancers. T84 and HT29 cell lines were used to examine the cellular effects of Dasatinib. Cell viability was assessed using WST-1 assay and apoptosis assessed using an ELISA cell death detection assay. Dasatinib increased T84 tumour cell apoptosis in a dose dependent manner and resulted in reduced expression of nuclear (p=0.008) and cytoplasmic (p=0.016) FAK (tyr 861) expression and increased nuclear FGR expression (p=0.004). The results of this thesis confirm that colorectal cancer is a complex disease that represents several subtypes of cancer based on molecular biological behaviors. This thesis concentrated on features of the disease related to inflammation in terms of genetic and molecular characterisation. MSI cancers are closely associated with systemic inflammation but despite this observation, they retain their relatively improved survival. MMP-9 is a feature of tissue remodeling during inflammation and is also associated with degradation of connective tissue, advanced T-stage and poor outcome when measured in the serum. The lack of stromal quantification due to TMA use rather than full sections makes the value of tumoural MMP-9 immunoreactivity in the prognostication and its association with MSI unknown and requires further study. Finally, SFK activation was also associated with SIR, however, only cytoplasmic HCK was independently associated with poor survival in patients with TNM stage II disease, the group of patients where identifying a novel biomarker is most needed. There is still some way to go before these biomarkers are translated into clinical practice and future work needs to focus on obtaining a reliable and robust scientific technique with validation in an adequately powered independent cohort.
Resumo:
2016
Resumo:
Rapid Alkalinization Factor (RALF) are cysteins-rich peptides ubiquitous in plant kingdom. They play multiple roles as hormone signals and recently their involvement in host-pathogen crosstalk as negative regulator of immunity in Arabidopsis has also been recognized. In addition, RALF homologue peptides are secreted by different fungal pathogens as effectors during early stages of infections. The aim of this work was to characterize RALF genes as susceptibility factors during plant pathogen interaction in strawberry. For this, the genomic organization of the RALF gene families in the octoploid strawberry (Fragaria × ananassa) and the re-annotated genome of Fragaria vesca were described , identifying 13 member in F. vesca (FvRALF) and 50 members in F. x ananassa (FaRALF). The changes in expression of fruit FaRALF genes was investigated upon infection with C.acutatum and B. cinerea showing that, among RALF genes expressed in fruit, FaRALF3 was the only one upregulated by fungal infection in the ripe stage. A role of FaRALF3 as susceptibility gene was then assessed trough Agrobacterium-mediated transient FaRALF3 overexpression and silencing in fruits, revealing that FaRALF3 expression promotes fungal growth and hyphae penetration in host tissues. In silico analysis was used to identify distinct pathogen inducible elements upstream of the FaRALF3 gene. Agroinfiltration of strawberry fruit with deletion constructs of the FaRALF3 promoter identified a 5’ region required for FaRALF3 expression in fruit, but failed to identify a region responsible for fungal induced expression. Furthermore, FaRALF3 and strawberry receptor FERONIA (FaMRLK47) were heterologously expressed in E. coli in order to purify active proteins forms and study RALF-FERONIA interaction in strawberry. However, it was not possible to obtain pure and active proteins. Finally RNAi transgenic plants silenced for the FvRALF13 gene were genotypically and phenotypically characterized suggesting a role of FvRALF13 in flowering time regulation and reproductive organs development.
Resumo:
IF1, the endogenous inhibitor protein of mitochondrial F1Fo-ATPase, has raised interest in cancer research due to its overexpression in solid tumours compared to normal tissues. Physiologically, IF1 protects cells from energy depletion by limiting the ATP hydrolytic activity of ATP synthase triggered by mitochondrial depolarization caused by oxygen deficiency as it occurs during ischemic episodes. Considering both the physiological function of IF1 and that cancer cells in solid tumour are frequently exposed to oxygen deprivation, we hypothesized that IF1 overexpression represents a strategy that cancer cells develop to protect themselves from energy depletion under conditions of low oxygen availability. To assess this, we assayed the bioenergetic changes in 143B and HCT116 cancer cells with different metabolic features following stable silencing of IF1. Interestingly, we found that in both cell lines exposed to oxygen deprivation conditions the presence of IF1 limits the energy dissipation due to the activation of the ATP hydrolytic activity of ATP synthase. Furthermore, the analyses of cellular growth and viability revealed that the IF1 silencing inhibited proliferation in the highly glycolytic 143B cells, while it induced more than 50% of cellular death in HCT116 OXPHOS-dependent cells, indicating that the energetic advantage conferred by IF1 is essential for cancer cell proliferation or survival depending on the energy metabolism of each cell line. Moreover, under mitochondrial depolarization conditions, both mitophagy and mitochondrial biogenesis markers were found up-regulated in IF1-expressing cells only, thus indicating a continuous renewal and preservation of the mitochondrial mass. Taken together, our results sustain the idea that IF1 overexpression supports cancer cell adaptation to hypoxic or anoxic conditions also favouring the proliferation of re-oxygenated cells by promptly providing functional mitochondria.