957 resultados para pump-probe technique
Resumo:
In this paper, the feed-forward back-propagation artificial neural network (BP-ANN) algorithm is introduced in the traditional Focus Calibration using Alignment procedure (FOCAL) technique, and a novel FOCAL technique based on BP-ANN is proposed. The effects of the parameters, such as the number of neurons on the hidden-layer and the number of training epochs, on the measurement accuracy are analyzed in detail. It is proved that the novel FOCAL technique based on BP-ANN is more reliable and it is a better choice for measurement of the image quality parameters. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
The pulse compression induced by cross-phase modulation in birefringent dispersion decreasing fiber is discussed theoretically by solving the coupled Schrodinger equations which include the contribution of the high-order non-linear effects, and third-order dispersion. In particular, it is found that a high quality compressed signal pulse can be obtained by a pump pulse of low intense through the technique. The dependence of optimum compression on the non-linear factor N, time delay tau(d) and the dispersive ratio f is also discussed in detail. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The nuclear resonant reaction 19F(ρ,αγ)16O has been used to perform depth-sensitive analyses of fluorine in lunar samples and carbonaceous chondrites. The resonance at 0.83 MeV (center-of-mass) in this reaction is utilized to study fluorine surface films, with particular interest paid to the outer micron of Apollo 15 green glass, Apollo 17 orange glass, and lunar vesicular basalts. These results are distinguished from terrestrial contamination, and are discussed in terms of a volcanic origin for the samples of interest. Measurements of fluorine in carbonaceous chondrites are used to better define the solar system fluorine abundance. A technique for measurement of carbon on solid surfaces with applications to direct quantitative analysis of implanted solar wind carbon in lunar samples is described.
Resumo:
The resonant nuclear reaction 19F(p,αy)16O has been used to perform depth-sensitive analyses for both fluorine and hydrogen in solid samples. The resonance at 0.83 MeV (center-of-mass) in this reaction has been applied to the measurement of the distribution of trapped solar protons in lunar samples to depths of ~1/2µm. These results are interpreted in terms of a redistribution of the implanted H which has been influenced by heavy radiation damage in the surface region. Fluorine determinations have been performed in a 1-µm surface layer on lunar and meteoritic samples using the same 19F(p,αy)16O resonance. The measurement of H depth distributions has also been used to study the hydration of terrestrial obsidian, a phenomenon of considerable archaeological interest as a means of dating obsidian artifacts. Additional applications of this type of technique are also discussed.
Resumo:
A method using two prisms for measurement of small dynamic angles is proposed in which the measurement is based on a simple tangent equation and a phase-modulating interferometer with a laser diode to measure dynamic optical path differences with higher accuracy. Owing to the simple tangent equation, the symmetry requirement on the two prisms in the optical configuration is eliminated, and easy measurement of the separations between two parallel beams with a position-sensitive detector is achieved. Small-dynamic-angle measurements are experimentally demonstrated with high accuracy. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In the field of mechanics, it is a long standing goal to measure quantum behavior in ever larger and more massive objects. It may now seem like an obvious conclusion, but until recently it was not clear whether a macroscopic mechanical resonator -- built up from nearly 1013 atoms -- could be fully described as an ideal quantum harmonic oscillator. With recent advances in the fields of opto- and electro-mechanics, such systems offer a unique advantage in probing the quantum noise properties of macroscopic electrical and mechanical devices, properties that ultimately stem from Heisenberg's uncertainty relations. Given the rapid progress in device capabilities, landmark results of quantum optics are now being extended into the regime of macroscopic mechanics.
The purpose of this dissertation is to describe three experiments -- motional sideband asymmetry, back-action evasion (BAE) detection, and mechanical squeezing -- that are directly related to the topic of measuring quantum noise with mechanical detection. These measurements all share three pertinent features: they explore quantum noise properties in a macroscopic electromechanical device driven by a minimum of two microwave drive tones, hence the title of this work: "Quantum electromechanics with two tone drive".
In the following, we will first introduce a quantum input-output framework that we use to model the electromechanical interaction and capture subtleties related to interpreting different microwave noise detection techniques. Next, we will discuss the fabrication and measurement details that we use to cool and probe these devices with coherent and incoherent microwave drive signals. Having developed our tools for signal modeling and detection, we explore the three-wave mixing interaction between the microwave and mechanical modes, whereby mechanical motion generates motional sidebands corresponding to up-down frequency conversions of microwave photons. Because of quantum vacuum noise, the rates of these processes are expected to be unequal. We will discuss the measurement and interpretation of this asymmetric motional noise in a electromechanical device cooled near the ground state of motion.
Next, we consider an overlapped two tone pump configuration that produces a time-modulated electromechanical interaction. By careful control of this drive field, we report a quantum non-demolition (QND) measurement of a single motional quadrature. Incorporating a second pair of drive tones, we directly measure the measurement back-action associated with both classical and quantum noise of the microwave cavity. Lastly, we slightly modify our drive scheme to generate quantum squeezing in a macroscopic mechanical resonator. Here, we will focus on data analysis techniques that we use to estimate the quadrature occupations. We incorporate Bayesian spectrum fitting and parameter estimation that serve as powerful tools for incorporating many known sources of measurement and fit error that are unavoidable in such work.
Resumo:
A technique is developed for the design of lenses for transitioning TEM waves between conical and/or cylindrical transmission lines, ideally with no reflection or distortion of the waves. These lenses utilize isotropic but inhomogeneous media and are based on a solution of Maxwell's equations instead of just geometrical optics. The technique employs the expression of the constitutive parameters, ɛ and μ, plus Maxwell's equations, in a general orthogonal curvilinear coordinate system in tensor form, giving what we term as formal quantities. Solving the problem for certain types of formal constitutive parameters, these are transformed to give ɛ and μ as functions of position. Several examples of such lenses are considered in detail.
Resumo:
In the sinusoidal phase modulating interferometer technique, the high-speed CCD is necessary to detect the interference signals. The reason of ordinary CCD's low frame rate was analyzed, and a novel high-speed image sensing technique with adjustable frame rate based on ail ordinary CCD was proposed. And the principle of the image sensor was analyzed. When the maximum frequency and channel bandwidth were constant, a custom high-speed sensor was designed by using the ordinary CCD under the control of the special driving circuit. The frame rate of the ordinary CCD has been enhanced by controlling the number of pixels of every frame; therefore, the ordinary of CCD can be used as the high frame rate image sensor with small amount of pixels. The multi-output high-speed image sensor has the deficiencies of low accuracy, and high cost, while the high-speed image senor with small number of pixels by using this technique can overcome theses faults. The light intensity varying with time was measured by using the image sensor. The frame rate was LIP to 1600 frame per second (f/s), and the size of every frame and the frame rate were adjustable. The correlation coefficient between the measurement result and the standard values were higher than 0.98026, and the relative error was lower than 0.53%. The experimental results show that this sensor is fit to the measurements of sinusoidal phase modulating interferometer technique. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
We found reversible dark-center diffraction of the transmitted probe beam passing through the chromium film. which is induced by the pump femtosecond laser. The dark-center diffraction of I he transmitted probe beam appears and disappears with and without the pump beam. A view of diffractive optics with binary phase plate is put forward, which explains the reversible dark-center diffractive optical phenomenon. The pre-ablated hole on the metal film can be regarded as a uniform light filed without phase modulation, the Surrounding Circular part around the pre-ablated hole can be regarded as "phase modulated". Therefore, this diffraction optic view might be helpful for us to understand the phase change of the metal film introduced by the femtosecond laser pulse. (C) 2008 Elsevier B.V, All rights reserved.
Resumo:
We present what we believe is a novel technique based on the moire effect for fully diagnosing the beam quality of an x-ray laser. Using Fresnel diffraction theory, we investigated the intensity profile of the moire pattern when a general paraxial beam illuminates a pair of Ronchi gratings in the quasi-far field. Two formulas were derived to determine the beam quality factor M-2 and the effective radius of curvature R-e from the moire pattern. On the basis of the results, the far-field divergence, the waist location, and the radius can be calculated further. Finally, we verified the approach by use of numerical simulation. (C) 1999 Optical Society of America [S0740-3232(99)01502-1].
Resumo:
在用半导体激光器抽运的单包层掺Yb调Q光纤激光器中观察到了清晰稳定的自锁模脉冲序列。脉冲包络形状为调Q脉冲。每个锁模脉冲的幅值由其在调Q脉冲中的相应位置决定。经过分析,认为自相位调制是调Q光纤激光器中产生锁模的主要原因。自相位调制的存在使得光脉冲的频谱被展宽,当这种展宽和腔的模式间隔相差不多时,腔内的模式便能相互作用,直到它们之间产生一个固定的相位关系。也即形成锁模。在此基础上。去掉声光晶体,并用两个光栅作为腔镜,实现了全光纤法布里-珀罗(F-P)腔锁模光纤激光器。改变腔结构,分别采用光栅和光纤反射圈作为
Resumo:
A scheme using a lens array and the technique of spectral dispersion is presented to improve target illumination uniformity in laser produced plasmas. Detailed two-dimensional simulation shows that a quasi-near-field target pattern, of steeper edges and without side lobes, is achieved with a lens array, while interference stripes inside the pattern are smoothed out by the use of the spectral dispersion technique. Moving the target slightly from the exact focal plane of the principal focusing lens can eliminate middle-scale-length intensity fluctuation further. Numerical results indicate that a well-irradiated laser spot with small nonuniformity and great energy efficiency can be obtained in this scheme. (c) 2007 American Institute of Physics.