999 resultados para platinum-rhodium alloy
Resumo:
The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.
Resumo:
Up to 50% of epithelial ovarian cancers (EOC) display defects in the homologous recombination (HR) pathway. We sought to determine the ramifications of the homologous recombination-deficient (HRD) status on the clinicopathologic features, chemotherapy response, and survival outcomes of patients with EOCs. HR status was determined in primary cultures from ascitic fluid in 50 chemotherapy-naïve patients by a functional RAD51 immunofluorescence assay and correlated with in vitro sensitivity to the PARP inhibitor (PARPi), rucaparib. All patients went on to receive platinum-based chemotherapy; platinum sensitivity, tumor progression, and overall survival were compared prospectively in HR-competent versus HRD patients. Compared with HR-competent patients, the HRD group was predominantly serous with a higher median CA125 at presentation. HRD was associated with higher ex vivo PARPi sensitivity and clinical platinum sensitivity. Median follow-up duration was 14 months; patients in the HRD group had lower tumor progression rates at 6 months, lower overall/disease-specific death rates at 12 months, and higher median survival. We therefore suggest that HRD as predicted by a functional RAD51 assay correlates with in vitro PARPi sensitivity, clinical platinum sensitivity, and improved survival outcome.
Resumo:
A mechanism of CO oxidation by a thin surface oxide of Rh supported on ceria is proposed: CO is oxidized by the Rh-oxide film, which is subsequently reoxidized by a ceria surface O atom. The proposed mechanism is supported by in situ Raman spectroscopic investigations.
Resumo:
The electrochemical reduction of benzoic acid in the presence and absence of hydrogen (H-2) has been investigated using a 10 mu m diameter platinum microelectrode in four different room temperature ionic liquids (RTILs), namely [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf] and [C(4)mim][BF4], versus Ag/Ag+. In all cases, reductive voltammetry is observed, and is suggested to occur via a CE mechanism in which dissociation of benzoic acid is followed by electron transfer to H+ ultimately forming adsorbed hydrogen. Furthermore, the adsorbed H atoms, formed from the reduction of benzoic acid, could be used to achieve the rapid hydrogenolysis of the organic compound (bis(benzyloxycarbonyl)-L-lysine) on the timescale of the voltammetric technique under moderate conditions (25 degrees C).
Resumo:
Electrochemically modified ethylene oxidation over a PI film supported on the Na+ ion conductor beta '' alumina has been studied over a range of conditions encompassing both promotion and poisoning, The system exhibits reversible behavior, and the data are interpreted in terms of (i) Na-enhanced oxygen chemisorption and (ii) poisoning of the surface by accumulation of Na compounds. At low Na coverages the first effect results in increased competitive adsorption of oxygen at the expense of ethylene, resulting in an increased rate, At very negative catalyst potentials (high Na coverage) both effects operate to poison the system: the increased strength of the Pt-O bond and coverage of the catalytic surface by compounds of Na strongly suppress the rate, Kinetic and spectroscopic results for ethylene oxidation over a Pt(111)-Na model catalyst shed light on important aspects of the electrochemically controlled system, Low levels of Na promote the reaction and high levels poison it, mirroring the behavior observed under electrochemical control and strongly suggesting that sodium pumped from the solid electrolyte is the key species, XP and Auger spectra show that under reaction conditions, the sodium exists as a surface carbonate. Post-reaction TPD spectra and the use of (CO)-C-13 demonstrate that CO is formed as a stable reaction intermediate, The observed activation energy (56 +/- 3 kJ/mol) is similar to that measured for CO oxidation under comparable conditions, suggesting that the rate limiting step is CO oxidation. (C) 1996 Academic Press, Inc.
Resumo:
A facile and user-friendly protocol has been developed for the selective synthesis of E-vinyl silanes derived from propargylic alcohols using a PtCl2/XPhos catalyst system. The reaction is generally high yielding and provides a single regioisomer at the ß-position with E-alkene geometry. The reaction is extremely tolerant of functionality and has a wide scope of reactivity both in terms of alkynes and silanes used. The catalyst loading has been investigated and it is found that good reactivity is observed at extremely low catalyst loadings. This methodology has also been extended to a one-pot hydrosilylation Denmark–Hiyama coupling.
Resumo:
The biocompatibility of NiTi after laser welding was studied by examining the in vitro (mesenchymal stem cell) MSC responses at different sets of time varying from early (4 to 12 h) to intermediate phases (1 and 4 days) of cell culture. The effects of physical (surface roughness and topography) and chemical (surface Ti/Ni ratio) changes as a consequence of laser welding in different regions (WZ, HAZ, and BM) on the cell morphology and cell coverage were studied. The results in this research indicated that the morphology of MSCs was affected primarily by the topographical factors in the WZ: the well-defined and directional dendritic pattern and the presence of deeper grooves. The morphology of MSCs was not significantly modulated by surface roughness. Despite the possible initial Ni release in the medium during the cell culture, no toxic effect seemed to cause to MSCs as evidenced by the success of adhesion and spreading of the cells onto different regions in the laser weldment. The good biocompatibility of the NiTi laser weldment has been firstly reported in this study.
Resumo:
In this study, two L27 Taguchi experiments were carried out to study the effect of fibre laser welding parameters and their interactions upon the weld bead aspect ratio of nickel–titanium thin foil. The optimum parameters to produce full penetrated weld with the largest aspect ratio and desirable microstructure were successfully obtained by the Taguchi experimental design. The corrosion property of the optimized NiTi weld in Hank’s solution at 37.5 °C was studied and compared with the as-received NiTi. To improve the corrosion properties of the weld, the effect of post-weld-heat-treatments ranging from 573 to 1173 K was investigated. The corrosion properties, surface morphology, microstructure and Ti/Ni ratio of the heat-treated NiTi weld were analysed. It was found that a post-weld heat treatment at 573 K for 1 h provided the best pitting corrosion resistance at the weld zone.
Resumo:
This work presents a computational framework based on finite element methods to simulate the fibre-embedding process using ultrasonic consolidation process. The computational approach comprises of a material model which takes into account thermal and acoustic softening effects and a friction model which indicates the realistic friction behaviour at the interfaces. The derived material model and developed friction model have been incorporated in finite element model. Using the implemented material and friction model, thermo-mechanical analyses of embedding of fibre in aluminium alloy 3003 has been performed. Effect of different process parameters, such as velocity of sonotrode, displacement amplitude of ultrasonic vibration and applied loads, is studied and compared with the experimental results. The presented work has specially focused on the quality of the developed weld which could be evaluated by the friction work and the coverage of the fibre which is estimated by the plastic flow around the fibre. The computed friction work obtained from the thermomechanial analyses performed in this study show a similar trend as that of the experimentally found fracture energies. © Springer-Verlag London Limited 2010.
Resumo:
Ultrasonic welding (consolidation) process is a rapid manufacturing process that is used to join thin layers of metal at low temperature and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, an attempt has been made to simulate the ultrasonic welding of metals by taking into account these effects (surface and volume). A phenomenological material model has been proposed, which incorporates these two effects (i.e., surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects, a friction law with variable coefficient of friction that is dependent on contact pressure, slip, temperature, and number of cycles has been derived from experimental friction tests. The results of the thermomechanical analyses of ultrasonic welding of aluminum alloy have been presented. The goal of this work is to study the effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic oscillation, and velocity of welding sonotrode on the friction work at the weld interface. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented, showing a good agreement. Copyright © 2009 by ASME.
Resumo:
A comparative study of CO electrooxidation on different catalysts using in situ FTIR spectroscopy is presented. As electrode materials, polycrystalline Pt and Ru and a PtRu (50:50) alloy are used. The latter is one of the well-known active alloys for CO oxidation. The potential dependence of the band frequencies for the CO stretch indicates the formation of relatively compact islands at pure Pt and Ru, and a loose adlayer structure at the alloy. This loose structure has a positive effect on the rate of oxidative desorption. CO submonolayer coverages are obtained by integrating the absorption bands for CO produced upon oxidation of adsorbed CO. The band intensities measured at Pt, Ru, and PtRu indicate an influence of the substrate on the absorption coefficient of the CO stretch. It is shown that for a correct description of the catalyst properties toward CO electrooxidation, it must be distinguished between bulk and adsorbed CO. In contrast to the statement of most of the recent papers that a PtRu alloy (50:50) is the material with the highest activity for CO oxidation, it is demonstrated and rationalized in the present paper that for bulk CO oxidation pure Ru is the best catalyst. © 1999 American Chemical Society.
Resumo:
A hierarchical nanoparticle strategy to simultaneously gain super Raman signal amplification, high uniformity, and reproducibility is presented. Using hollow Au-Ag alloy nanourchins, an ultrahigh sensitivity, e.g., down to 1 fM concentrations for DEHP molecule is obtained. A small standard deviation of <10% is achieved by simply dropping and evaporating sub-100 nm nanourchins onto a substrate.
Resumo:
Background: Our previous laboratory and clinical data suggested that one mechanism underlying the development of platinum resistance in ovarian cancer is the acquisition of DNA methylation. We therefore tested the hypothesis that the DNA hypomethylating agent 5-aza-2'-deoxycytodine (decitabine) can reverse resistance to carboplatin in women with relapsed ovarian cancer.
Methods: Patients progressing 6-12 months after previous platinum therapy were randomised to decitabine on day 1 and carboplatin (AUC 6) on day 8, every 28 days or carboplatin alone. The primary objective was response rate in patients with methylated hMLH1 tumour DNA in plasma.
Results: After a pre-defined interim analysis, the study closed due to lack of efficacy and poor treatment deliverability in 15 patients treated with the combination. Responses by GCIG criteria were 9 out of 14 vs 3 out of 15 and by RECIST were 6 out of 13 vs 1 out of 12 for carboplatin and carboplatin/decitabine, respectively. Grade 3/4 neutropenia was more common with the combination (60% vs 15.4%) as was G2/3 carboplatin hypersensitivity (47% vs 21%).
Conclusions: With this schedule, the addition of decitabine appears to reduce rather than increase the efficacy of carboplatin in partially platinum-sensitive ovarian cancer and is difficult to deliver. Patient-selection strategies, different schedules and other demethylating agents should be considered in future combination studies.
Resumo:
6061 O Al alloy foils were welded to form monolithic and SiC fibre-embedded samples using the ultrasonic consolidation (UC) process. Contact pressures of 135, 155 and 175 MPa were investigated at 20 kHz frequency, 50% of the oscillation amplitude, 34.5 mm s sonotrode velocity and 20 °C. Deformed microstructures were analysed using electron backscatter diffraction (EBSD). At all contact pressures deformation occurs by non-steady state dislocation glide. Dynamic recovery is active in the upper and lower foils. Friction at the welding interface, instantaneous internal temperatures (0.5-0.8 of the melting temperature, T), contact pressure and fast strain rates result in transient microstructures and grain size reduction by continuous dynamic recrystallization (CDRX) within the bonding zone. Bonding occurs by local grain boundary migration, which allows diffusion and atom interlocking across the contact between two clean surfaces. Textures weaken with increasing contact pressure due to increased strain hardening and different grain rotation rates. High contact pressures enhance dynamic recovery and CDRX. Deformation around the fibre is intense within 50 μm and extends to 450 μm from it. © 2009 Acta Materialia Inc.