991 resultados para off screen
Resumo:
Bottom trawling is one among the most destructive human induced physical disturbances inflicted to seabed and its living communities. The bottom trawls are designed to tow along the sea floor, which on its operation indiscriminately smashes everything on their way crushing, killing, burying and exposing to predators the benthic fauna. Bottom trawling causes physical and biological damages that are irreversible, extensive and long lasting. The commercial trawling fleet of India consists of 29,241 small and medium-fishing boats. The northwest coast of India has the largest fishing fleet consisting of 23,618 mechanized vessels, especially the bottom trawlers. However, attempts were not made to study the impact of bottom trawling along Northwest coast of India. The estimated optimum fleet size of Gujarat is 1,473 mechanised trawlers while 7402 commercial trawlers are operated from the coast of Gujarat. Veraval port was designed initially for 1,200 fishing trawlers but 2793 trawlers are being operated from this port making it the largest trawler port of Gujarat. The aim of this study was to investigate the effects of bottom trawling on the substratum and the associated benthic communities of commercial trawling grounds of Veraval coast. The study compared the differences between the samples collected before and after experimental trawling to detect the impacts of bottom trawling. Attempts were made to assess the possible impact of bottom trawling on:(i) the sediment characteristics (ii)the sediment heavy metals (iii) epifauna (iv) macrobenthos and (v) meiobenthos. This study is expected to generate information on trawling impacts of the studied area that will help in better management of the biological diversity and integrity of the benthic fauna off Veraval coast. An exhaustive review on the studies conducted around the world and in India on impact of bottom trawling on the benthic fauna is also detailed.In the present study, the bottom trawling induced variations on sediment organic matter, epifauna, macrobenthos and meiobenthos were evident. It was also observed that the seasonal/ natural variations were more prominent masking the trawling effect on sediment texture and heavy metals. Enforcement of control of excess bottom trawlers and popularization of semi pelagic trawls designed to operate a little distance above the sea bottom for off bottom resources will minimize disturbance on the sea bottom. Training and creating awareness in responsible fishing should be made mandatory requirements, to the coastal communities. They should be made wardens to protect the valuable resources for the benefit of sustainability. To protect the biodiversity and ecosystem health, the imminent need is to survey and make catalogue, identification of sensitive areas or hot spots and to adopt management strategies for the conservation and biodiversity protection of benthic fauna. The present study is a pioneering work carried out along Veraval coast. This thesis will provide a major fillip to the studies on impact of bottom trawling on the benthic fauna along the coast of India.
Resumo:
This thesis is an attempt to Provenence, Sedimentetion and Geochemistry of the Modern Sediments of the Mud Banks off the Central Kerela Coast, India. In the present doctoral work, an attempt has been made to study in detail the mud banks of central Kerala, i.e. of Narakkal, Saudi and Purakkad areas which are reported as permanent mud banks, since olden days. The studies have been conducted during the years 1985 and 1986. The important findings of the study is stated as clay mineralogical studies of the rivers, lake and mud bank sediments reveal that the dominant clay mineral is kaolinite followed by montmorillonite, illite and gibbsite. Geochemical analysis of the Vembanad lake and mud bank sediments show that the iron and manganese are widely distributed both in the lake and mud bank sediments
Resumo:
The broad objective of the present study is to present a synoptic picture of the distribution and abundance of fish eggs and the lmportant groups of fish larvae obtained off the SW coast of India. so as to delineate the spawning areas and seasones of the fish population. with special reference to the scombroid fishes. An attempt was also made to correlate the occurrence of certain categories of larvae and hydrographical factors like temperature and salinity. The present effort was a pioneering one in Indian waters. in as much as it involved systematic and seasonally repetitive collection of ichthyoplankton from a large stretch of our seas and mapping of their distribution and abudance.
Resumo:
The present study is aimed at observing the variations, in space and time, of see of the important hydrographic parameters such as sea water temperature, salinity and Resolved oxygen within the coastal waters along the south-west coast of Indiametween Ratnagiri (17°OO*N,73°20'E) and cape comorin ( 8°10'N,77°30*E). Specific data relating to the process of upwelling and sinking was collected mainly to evaluate the extent and intensity of the vertical mixing processes active in the area under study. The study also attempted possible correlations between the observed parameters and the occurrence and migrations of some of the major pelagic fishery resources such as sardine,mackerel and anchovy in the area under study
Resumo:
Satellite remote sensing is being effectively used in monitoring the ocean surface and its overlying atmosphere. Technical growth in the field of satellite sensors has made satellite measurement an inevitable part of oceanographic and atmospheric research. Among the ocean observing sensors, ocean colour sensors make use of visible band of electromagnetic spectrum (shorter wavelength). The use of shorter wavelength ensures fine spatial resolution of these parameters to depict oceanographic and atmospheric characteristics of any region having significant spaio-temporal variability. Off the southwest coast of India is such an area showing very significant spatio-temporal oceanographic and atmospheric variability due to the seasonally reversing surface winds and currents. Consequently, the region is enriched with features like upwelling, sinking, eddies, fronts, etc. Among them, upwelling brings nutrient-rich waters from subsurface layers to surface layers. During this process primary production enhances, which is measured in ocean colour sensors as high values of Chl a. Vertical attenuation depth of incident solar radiation (Kd) and Aerosol Optical Depth (AOD) are another two parameters provided by ocean colour sensors. Kd is also susceptible to undergo significant seasonal variability due to the changes in the content of Chl a in the water column. Moreover, Kd is affected by sediment transport in the upper layers as the region experiences land drainage resulting from copious rainfall. The wide range of variability of wind speed and direction may also influence the aerosol source / transport and consequently AOD. The present doctoral thesis concentrates on the utility of Chl a, Kd and AODprovided by satellite ocean colour sensors to understand oceanographic and atmospheric variability off the southwest coast of India. The thesis is divided into six Chapters with further subdivisions
Resumo:
It is the object of the present study to contribute so much information as possible on the biology and economy of M.casta on the south west coast of India. It includes investigations on the growth of the species in three dimensions.
Resumo:
Elasmobranchs comprising sharks, skates and rays have traditionally formed an important fishery along the Indian coast. Since 2000, Indian shark fishermen are shifting their fishing operations to deeper/oceanic waters by conducting multi-day fishing trips, which has resulted in considerable changes in the species composition of the landings vis- a-vis those reported during the 1980’s and 1990’s. A case study at Cochin Fisheries Harbour (CFH), southwest coast of India during 2008-09 indicated that besides the existing gillnet–cum- hooks & line and longline fishery for sharks, a targeted fishery at depths >300-1000 m for gulper sharks (Centrophorus spp.) has emerged. In 2008, the chondrichthyan landings (excluding batoids) were mainly constituted by offshore and deep-sea species such as Alopias superciliosus (24.2%), Carcharhinus limbatus (21.1%), Echinorhinus brucus (8.2%), Galeocerdo cuvier (5.4%), Centrophorus spp. (7.3%) and Neoharriotta pinnata (4.2%) while the contribution by the coastal species such as Sphyrna lewini (14.8%), Carcharhinus sorrah (1.4%) and other Carcharhinus spp. has reduced. Several deep-sea sharks previously not recorded in the landings at Cochin were also observed during 2008-09. It includes Hexanchus griseus, Deania profundorum, Zameus squamulosus and Pygmy false catshark (undescribed) which have been reported for the first time from Indian waters. Life history characteristics of the major fished species are discussed in relation to the fishery and its possible impacts on the resource
Resumo:
Cochin University of Science And Technology
Resumo:
The present study is the first attempt to understand population characteristics of the deep-sea pandalid shrimp, P. quasigrandis and to assess the status of these resources off Kerala coast.Total mortality coefficient (Z) of P. quasigrandis estimated by various methods.Natural mortality coefficient (M) calculated was 0.65 and 1.02 by Pauly‟sempirical formula and Srinaths‟s formula respectively The deep-sea shrimp P. quasigrandis exploited from the present fishing ground and their monetary return has started showing a declining trend. By observing the current yield and economic return, there is no further scope for increasing the catch from the present fishing ground. The study indicated that majority of the deep-sea shrimp trawlers, especially targeted for pandalid shrimps still concentrated off Kollam area (Quilon Bank). Even though researchers had located several potential deep-sea fishing grounds based on exploratory surveys in Indian EEZ , fishermen are unaware of these fishing grounds located and hence sharing the information about new potential deep-sea fishing grounds could avert the possible stock decline due to the intensive targeted deep-sea shrimp fishery in the Quilon Bank. Hence, the present study recommended that part of the effort from existing fishing grounds may be shifted to newly located deep-sea fishing grounds which will help in a sustainableexploitation of deep-sea resources off Kerala coast.
Resumo:
Globally most of the conventional fish stocks have reached a state of optimum exploitation or even over-exploitation; efficient utilization of non-conventional resources is necessary to meet the supply-demand gap for protein supply. Mesopelagic fishes can be considered as one such promising resource for the future, if appropriate harvest and post-harvest technologies are developed. Increasing human population and increasing demand for cheaper food fishes has made myctophids a possible potential resource for future exploitation and utilization. Earlier studies indicated the abundance of Diaphus spp. in the eastern and northeastern Arabian Sea. The present study also indicates the dominance of Diaphus spp. in the deep sea trawling grounds of south west coast of India. Commercial viability of the myctophid fishing in the Indian waters has to be worked out. The present catch estimation is based on the Stratified Random Sampling Method from the landing data. As the coverage of sampling area was limited and the gear efficiency was not standardized, the data generated are not precise. A counter check for the estimates is also not possible due to the absence of comparable works in the study area. Fish biomass estimation by acoustics survey coupled with direct fishing would only confirm the accuracy of estimates. Exploratory surveys for new fishing areas to be continued, for gathering the distribution, abundance, biological and ecological data and map the potential fishing ground on a GIS platform and the data should be provided to the commercial entrepreneurs. Generally non-conventional and non-targeted resources are under low fishing pressure and exploitation rates. Low values of fishing mortality and exploitation rates indicate that removal from the stock by fishing was only nominal from the present fishing grounds. The results indicate that the stock is almost at virgin state and remains grossly underexploited. Since the extent of distribution and abundance of the stock in the ecosystem remains to be ascertained, sustainable yield could not be estimated. Also the impact of myctophids harvest, on other commercially important fishes, has to be studied.
Resumo:
In the last years, the main orientation of Formal Concept Analysis (FCA) has turned from mathematics towards computer science. This article provides a review of this new orientation and analyzes why and how FCA and computer science attracted each other. It discusses FCA as a knowledge representation formalism using five knowledge representation principles provided by Davis, Shrobe, and Szolovits [DSS93]. It then studies how and why mathematics-based researchers got attracted by computer science. We will argue for continuing this trend by integrating the two research areas FCA and Ontology Engineering. The second part of the article discusses three lines of research which witness the new orientation of Formal Concept Analysis: FCA as a conceptual clustering technique and its application for supporting the merging of ontologies; the efficient computation of association rules and the structuring of the results; and the visualization and management of conceptual hierarchies and ontologies including its application in an email management system.
Resumo:
A presentation to explain the principles of EdShare
Resumo:
You can capture an image of your entire screen by typing Command-Shift-3. Typing Command-Shift-4 lets you choose a specific part of your screen. Region capture - you can change how the region selection area changes by using the following keys - note that you can release the original keys once the crosshairs appears, as long as you’ve started dragging your mouse, and you keep the mouse button down. • Space Bar: Press and hold the Space Bar, and the size of the current region is then locked and can be dragged around the screen. As long as you hold the Space Bar down, the region’s size is locked and it can be dragged about. • Shift: Press and hold the Shift key, and one side of the region will be locked, based on which way you then move the mouse. For instance, if you press and hold Shift, and then move your mouse down, you’ll only be able to resize the region vertically; the horizontal size will be fixed. Move the mouse left or right, and you can resize the region horizontally while holding the vertical size fixed. • Option: Press and hold Option while dragging your region, and you’ll change the way the region grows as you drag. By default, your region is anchored at the upper left corner; when you press Option, the anchor point is moved to the center of the current region, and it expands in all directions from that point. For more tips check the links!
Resumo:
A few files for background reading
Resumo:
Screen capture used for MedB & VP conference 2010