980 resultados para nucleotide sequence
Resumo:
Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.
Resumo:
Abstract The recent colonization of America by Drosophila subobscura represents a great opportunity for evolutionary biology studies. Knowledge of the populations from which the colonization started would provide an understanding of how genetic composition changed during adaptation to the new environment. Thus, a 793 nucleotide fragment of the Odh (Octanol dehydrogenase) gene was sequenced in 66 chromosomal lines from Barcelona (western Mediterranean) and in 66 from Mt. Parnes (Greece, eastern Mediterranean). No sequence of Odh fragment in Barcelona or Mt. Parnes was identical to any of those previously detected in America. However, an Odh sequence from Barcelona differed in only one nucleotide from another found in American populations. In both cases, the chromosomal lines presented the same inversion: O7, and the Odh gene was located within this inversion. This evidence suggests a possible western Mediterranean origin for the colonization. Finally, the molecular and inversion data indicate that the colonization was not characterized by multiple reintroductions.
Resumo:
BACKGROUND: DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. RESULTS: We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i) exhaustive population-genetic analyses including those based on the coalescent theory; ii) analysis adapted to the shallow data generated by the high-throughput genome projects; iii) use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv) identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v) visualization of the results integrated with current genome annotations in commonly available genome browsers. CONCLUSION: VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.
Resumo:
At high magnetic field strengths (≥ 3T), the radiofrequency wavelength used in MRI is of the same order of magnitude of (or smaller than) the typical sample size, making transmit magnetic field (B1+) inhomogeneities more prominent. Methods such as radiofrequency-shimming and transmit SENSE have been proposed to mitigate these undesirable effects. A prerequisite for such approaches is an accurate and rapid characterization of the B1+ field in the organ of interest. In this work, a new phase-sensitive three-dimensional B1+-mapping technique is introduced that allows the acquisition of a 64 × 64 × 8 B1+-map in ≈ 20 s, yielding an accurate mapping of the relative B1+ with a 10-fold dynamic range (0.2-2 times the nominal B1+). Moreover, the predominant use of low flip angle excitations in the presented sequence minimizes specific absorption rate, which is an important asset for in vivo B1+-shimming procedures at high magnetic fields. The proposed methodology was validated in phantom experiments and demonstrated good results in phantom and human B1+-shimming using an 8-channel transmit-receive array.
Resumo:
Recent genome-wide association studies (GWAS) have identified genetic variations near the IL28B gene which are strongly associated with spontaneous and treatment-induced clearance of hepatitis C virus (HCV) infection. Protective IL28B variations are strongly associated with on-treatment viral kinetics and approximately 2-fold increased sustained virologic response (SVR) rates in HCV genotype 1 and 4 patients. In HCV genotype 1 patients, IL28B variations were shown to be the strongest pre-treatment predictor of virologic response. In the treatment of HCV genotype 2 and 3 infected patients, IL28B variations play only a minor role. Preliminary data indicate that IL28B variations are also associated with treatment outcome of regimens, including directly acting antiviral (DAA) agents, though their impact seems to be attenuated compared to standard treatment. Here, we review these important findings and discuss possible implications for clinical decision making in the treatment of HCV infection.
Resumo:
HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (p<2.4 × 10(-12)). All associated SNPs mapped to the HLA class I region. Clinical relevance of host and pathogen variation was assessed using VL results. We identified two critical advantages to the use of viral variation for identifying host factors: (1) association signals are much stronger for HIV-1 sequence variants than VL, reflecting the 'intermediate phenotype' nature of viral variation; (2) association testing can be run without any clinical data. The proposed genome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host-pathogen interaction. DOI:http://dx.doi.org/10.7554/eLife.01123.001.
Resumo:
The ability to determine the location and relative strength of all transcription-factor binding sites in a genome is important both for a comprehensive understanding of gene regulation and for effective promoter engineering in biotechnological applications. Here we present a bioinformatically driven experimental method to accurately define the DNA-binding sequence specificity of transcription factors. A generalized profile was used as a predictive quantitative model for binding sites, and its parameters were estimated from in vitro-selected ligands using standard hidden Markov model training algorithms. Computer simulations showed that several thousand low- to medium-affinity sequences are required to generate a profile of desired accuracy. To produce data on this scale, we applied high-throughput genomics methods to the biochemical problem addressed here. A method combining systematic evolution of ligands by exponential enrichment (SELEX) and serial analysis of gene expression (SAGE) protocols was coupled to an automated quality-controlled sequence extraction procedure based on Phred quality scores. This allowed the sequencing of a database of more than 10,000 potential DNA ligands for the CTF/NFI transcription factor. The resulting binding-site model defines the sequence specificity of this protein with a high degree of accuracy not achieved earlier and thereby makes it possible to identify previously unknown regulatory sequences in genomic DNA. A covariance analysis of the selected sites revealed non-independent base preferences at different nucleotide positions, providing insight into the binding mechanism.
Resumo:
Mapping the transcription start points of the eap, emp, and vwb promoters revealed a conserved octanucleotide sequence (COS). Deleting this sequence abolished the expression of eap, emp, and vwb. However, electrophoretic mobility shift assays gave no evidence that this sequence was a binding site for SarA or SaeR, known regulators of eap and emp.
Resumo:
Despite data favouring a role of dietary fat in colonic carcinogenesis, no study has focused on tissue n3 and n6 fatty acid (FA) status in human colon adenoma-carcinoma sequence. Thus, FA profile was measured in plasma phospholipids of patients with colorectal cancer (n = 22), sporadic adenoma (n = 27), and normal colon (n = 12) (control group). Additionally, mucosal FAs were assessed in both diseased and normal mucosa of cancer (n = 15) and adenoma (n = 21) patients, and from normal mucosa of controls (n = 8). There were no differences in FA profile of both plasma phospholipids and normal mucosa, between adenoma and control patients. There were considerable differences, however, in FAs between diseased and paired normal mucosa of adenoma patients, with increases of linoleic (p = 0.02), dihomogammalinolenic (p = 0.014), and eicosapentaenoic (p = 0.012) acids, and decreases of alpha linolenic (p = 0.001) and arachidonic (p = 0.02) acids in diseased mucosa. A stepwise reduction of eicosapentaenoic acid concentrations in diseased mucosa from benign adenoma to the most advanced colon cancer was seen (p = 0.009). Cancer patients showed lower alpha linolenate (p = 0.002) and higher dihomogammalinolenate (p = 0.003) in diseased than in paired normal mucosa. In conclusion changes in tissue n3 and n6 FA status might participate in the early phases of the human colorectal carcinogenesis.
Resumo:
In oviparous vertebrates vitellogenin, the precursor of the major yolk proteins, is synthesized in the liver of mature females under the control of estrogen. We have established the organization and primary structure of the 5' end region of the Xenopus laevis vitellogenin A2 gene and of the major chicken vitellogenin gene. The first three homologous exons have exactly the same length in both species, namely 53, 21 and 152 nucleotides, and present an overall sequence homology of 60%. In both species, the 5'-non-coding region of the vitellogenin mRNA measures only 13 nucleotides, nine of which are conserved. In contrast, the corresponding introns of the Xenopus and the chicken vitellogenin gene show no significant sequence homology. Within the 500 nucleotides preceding the 5' end of the genes, at least six blocks with sequence homologies of greater than 70% were detected. It remains to be demonstrated which of these conserved sequences, if any, are involved in the hormone-regulated expression of the vitellogenin genes.
Resumo:
SPP1-encoded replicative DNA helicase gene 40 product (G40P) is an essential product for phage replication. Hexameric G40P, in the presence of AMP-PNP, preferentially binds unstructured single-stranded (ss)DNA in a sequence-independent manner. The efficiency of ssDNA binding, nucleotide hydrolysis and the unwinding activity of G40P are affected in a different manner by different nucleotide cofactors. Nuclease protection studies suggest that G40P protects the 5' tail of a forked molecule, and the duplex region at the junction against exonuclease attack. G40P does not protect the 3' tail of a forked molecule from exonuclease attack. By using electron microscopy we confirm that the ssDNA transverses the centre of the hexameric ring. Our results show that hexameric G40P DNA helicase encircles the 5' tail, interacts with the duplex DNA at the ss-double-stranded DNA junction and excludes the 3' tail of the forked DNA.
Resumo:
MR structural T1-weighted imaging using high field systems (>3T) is severely hampered by the existing large transmit field inhomogeneities. New sequences have been developed to better cope with such nuisances. In this work we show the potential of a recently proposed sequence, the MP2RAGE, to obtain improved grey white matter contrast with respect to conventional T1-w protocols, allowing for a better visualization of thalamic nuclei and different white matter bundles in the brain stem. Furthermore, the possibility to obtain high spatial resolution (0.65 mm isotropic) R1 maps fully independent of the transmit field inhomogeneities in clinical acceptable time is demonstrated. In this high resolution R1 maps it was possible to clearly observe varying properties of cortical grey matter throughout the cortex and observe different hippocampus fields with variations of intensity that correlate with known myelin concentration variations.
Resumo:
One major methodological problem in analysis of sequence data is the determination of costs from which distances between sequences are derived. Although this problem is currently not optimally dealt with in the social sciences, it has some similarity with problems that have been solved in bioinformatics for three decades. In this article, the authors propose an optimization of substitution and deletion/insertion costs based on computational methods. The authors provide an empirical way of determining costs for cases, frequent in the social sciences, in which theory does not clearly promote one cost scheme over another. Using three distinct data sets, the authors tested the distances and cluster solutions produced by the new cost scheme in comparison with solutions based on cost schemes associated with other research strategies. The proposed method performs well compared with other cost-setting strategies, while it alleviates the justification problem of cost schemes.