973 resultados para light absorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MgO:Fe3+ (0.1-5 mol%) nanoparticles (NPs) were synthesized via eco-friendly, inexpensive and simple low temperature solution combustion route using Aloe vera gel as fuel. The final products were characterized by SEM, TEM and HRTEM. PXRD data and Rietveld analysis revealed the formation of cubic system. The influence of Fe3+ ion concentration on the structure morphology, UV absorption, PL emission and photocatalytic activity of MgO:Fe3+ NPs were investigated. The yellow emission with CIE chromaticity coordinates (0.44, 0.52) and average correlated color temperature value was found to be 3540 K which corresponds to warm light of NPs. The control of Fe3+. on MgO matrix influences the photocatalytic decolorization of methylene blue (MB) under UV light. The enhanced photocatalytic activity of MgO:Fe3+ (4 mol%) was attributed to dopant concentration, effective crystallite size, textural properties, decreased band gap and capability for reducing the electron hole pair recombination. Further, the trends of inhibitory effect in the presence of different radical scavengers were explored. These findings open up new avenues for the exploration of Fe-doped MgO in eco-friendly water applications and in the process of display devices. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to develop heterogeneous visible light active photocatalysts using AgBr and Ag3PO4 using CeO2 nanoflakes as an efficient substrate. Ascorbic acid was employed as a fuel to synthesize fine ceria nanoflakes by a facile solution combustion process. AgBr and Ag3PO4 were decorated on ceria to prepare AgBr/Ag3PO4/ceria nanocomposites. The structure of the composite was determined by X-ray diffraction analysis. Novel flakelike morphology was revealed using electron microscopy techniques. The nanocomposites exhibit excellent photocatalytic activity under visible light compared to pristine ceria nanoparticles. The nanocomposite catalyst particles degraded both anionic and cationic dyes. It also exhibited efficient antimicrobial activity under visible light. The AgBr/Ag3PO4/ceria nanocomposite was characterized using X-ray diffraction analysis, diffuse reflectance spectroscopy, electron microscopy, BET surface area analysis, and X-ray photoelectron spectroscopy, and the reasons for enhanced photocatalytic activity were elucidated. The presence of silver based semiconductors on ceria has shown to decrease charge recombination through photoluminescence analysis that attributed for enhanced photocatalytic activity. The AgBr/Ag3PO4/ceria nanocomposite has shown a stable performance after many repeated cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel BioBr/Cd(OH)(2) heterostructures were synthesized by a facile chemical bath method under ambient conditions. A series of BiOBr/Cd(OH)(2) heterostructures were obtained by tuning the Bi/Cd molar ratios. The obtained heterostructures were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). Optical properties were studied by UV-visible spectroscopy, diffuse reflectance spectroscopy and photoluminescence (PL). Photocatalytic studies on rhodamine B (RhB) under visible light irradiation showed that the heterostructures are very efficient photocatalysts in mild basic medium. Scavenger test studies confirmed that the photogenerated holes and superoxide radicals (O-2(center dot-)) are the main active species responsible for RhB degradation. Comparison of photoluminescence (PL) intensity suggested that an inhibited charge recombination is crucial for the degradation process over these photocatalysts. Moreover, relative positioning of the valence and conduction band edges of the semiconductors, O-2/O-2(center dot-) and (OH)-O-center dot/H2O redox potentials and HOMO-LUMO levels of RhB appear to be responsible for the hole-specificity of degradation. Photocatalytic recycling experiments indicated the high stability of the catalysts in the reaction medium without any significant loss of activity. This study hence concludes that the heterojunction constructed between Cd(OH)(2) and BiOBr interfaces play a crucial role in influencing the charge carrier dynamics and subsequent photocatalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of a Higgs boson with a mass of 126 GeV at the LHC when combined with the non-observation of new physics both in direct and indirect searches imposes strong constraints on supersymmetric models and in particular on the top squark sector. The experiments for direct detection of dark matter have provided with yet more constraints on the neutralino LSP mass and its interactions. After imposing limits from the Higgs, flavour and dark matter sectors, we examine the feasibility for a light stop in the context of the pMSSM, in light of current results for stop and other SUSY searches at the LHC. We only require that the neutralino dark matter explains a fraction of the cosmologically measured dark matter abundance. We find that a stop with mass below similar to 500 GeV is still allowed. We further study various probes of the light stop scenario that could be performed at the LHC Run-II either through direct searches for the light and heavy stop, or SUSY searches not currently available in simplified model results. Moreover we study the characteristics of heavy Higgs for the points in the parameter space allowed by all the available constraints and illustrate the region with large cross sections to fermionic or electroweakino channels. Finally we show that nearly all scenarios with a small stop-LSP mass difference will be tested by Xenon1T provided the NLSP is a chargino, thus probing a region hard to access at the LHC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the effect of electric field on energy absorption capacity of carbon nanotube forests (CNTFs), comprising of vertically aligned multiwalled carbon nanotubes, under both quasistatic (strain rate, (epsilon) over dot = 10(-3) s(-1)) and dynamic ((epsilon) over dot = similar to 10(3) s(-1)) loading conditions. Under quasistatic condition, the CNTFs were cyclically loaded and unloaded while electric field was applied along the length of carbon nanotube (CNT) either throughout the loading cycle or explicitly during either the loading or the unloading segment. The energy absorbed per cycle by CNTF increased monotonically with electric field when the field was applied only during the loading segment: A 7 fold increase in the energy absorption capacity was registered at an electric field of 1 kV/m whereas no significant change in it was noted for other schemes of electro-mechanical loading. The energy absorption capacity of CNTF under dynamic loading condition also increased monotonically with electric field; however, relative to the quasistatic condition, less pronounced effect was observed. This intriguing strain rate dependent effect of electric field on energy absorption capacity of CNTF is explained in terms of electric field induced strengthening of CNTF, originating from the time dependent electric field induced polarization of CNT. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoscale ordering in a polymer blend structure is indispensable to obtain materials with tailored properties. It was established here that controlling the arrangement of nanoparticles, with different characteristics, in co-continuous PC/PVDF (polycarbonate/poly(vinylidene fluoride)) blends can result in outstanding microwave absorption (ca. 90%). An excellent reflection loss (RL) of ca. -71 dB was obtained for a model blend structure wherein the conducting (multiwall carbon nanotubes, MWNTs) and the magnetic inclusions (Fe3O4) are localized in PVDF and the dielectric inclusion (barium titanate, BT) is in PC. The MWNTs were modified using polyaniline, which facilitates better charge transport in the blends. Furthermore, by introducing surface active groups on BT nanoparticles and changing the macroscopic processing conditions, the localization of BT nanoparticles can be tailored, otherwise BT nanoparticles would localize in the preferred phase (PVDF). In this study, we have shown that by ordered arrangement of nanoparticles, the incoming EM radiation can be attenuated. For instance, when PANI-MWNTs were localized in PVDF, the shielding was mainly through reflection. Now by localizing the conducting inclusion and the magnetic lossy materials in PVDF and the dielectric materials in PC, an outstanding shielding effectiveness of ca. -37 dB was achieved where shielding was mainly through absorption (ca. 90%). Thus, this study clearly demonstrates that lightweight microwave absorbers can be designed using polymer blends as a tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beneficial effects of carbon grafting into the iron active material for rechargeable alkaline-iron-electrodes with and without Bi2S3 additive is probed by in situ X-ray diffraction in conjunction with Extended X-ray Absorption Fine Structure (EXAFS) and electrochemistry. EXAFS data unravel that the composition of pristine active material (PAM) for iron electrodes comprises 87% of magnetite and 13% of alpha-iron while carbon-grafted active material comprises 60% of magnetite and 40% of alpha-iron. In situ XRD patterns are recorded using a specially designed electrochemical cell. XRD data reflect that magnetite present in PAM iron electrode, without bismuth sulfide additive, is not reduced during charging while PAM iron electrode with bismuth sulfide additive is partially reduced to alpha-Fe/Fe(OH)(2). Interestingly, carbon-grafted-iron electrodes with bismuth sulfide exhibit complete conversion of active material to alpha-Fe/Fe(OH)2. The ameliorating effect of carbon grafting is substantiated by kinetic parameters obtained from steady-state potentiostatic polarization and Tafel plots. The mechanism for iron-electrode charge - discharge reactions are discussed in the light of the potential - pH diagrams for Fe - H2O, S - H2O and FeSads - H2O systems and it is surmised that carbon grafting into iron active material promotes its electrochemical utilization. (C) The Author(s) 2015. Published by ECS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power densities required to operate active-matrix organic-light-emitting diode (AMOLED) based displays for high luminance applications, lead to temperature rise due to self heating. Temperature rise leads to significant degradation and consequent reduction in life time. In this work numerical techniques based computational fluid dynamics (CFD) is used to determine the temperature rise and its distribution for an AMOLED based display for a given power density and size. Passive cooling option in form of protruded rectangular fins is implemented to reduce the display temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and Cr (3% and 5%) doped CdS nanoparticles were synthesized by chemical co-precipitation method. The synthesized nanocrystalline particles are characterized by energy dispersive X-ray analysis (EDAX), scanning electron microscope (SEM), X-ray Diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Electron paramagnetic resonance (EPR), vibrating sample magnetometer (VSM) and Raman spectroscopy. XRD studies indicate that Cr doping in host CdS result a structural change from Cubic phase to mixed (cubic + hexagonal) phase. Due to quantum confinement effect, widening of the band gap is observed for undoped and Cr doped CdS nanoparticles compared to bulk CdS. The average particle size calculated from band gap values is in good agreement with the TEM study calculation and it is around 4-5 nm. A strong violet emission band consisting of two emission peaks is observed for undoped CdS nanoparticles, whereas for CdS:Cr nanoparticles, a broad emission band ranging from 420 nm to 730 nm with a maximum at similar to 587 nm is observed. The broad emission band is due to the overlapped emissions from variety of defects. EPR spectra of CdS:Cr samples reveal resonance signal at g = 2.143 corresponding to interacting Cr3+ ions. VSM studies indicate that the diamagnetic CdS nanoparticles are transform to ferromagnetic for 3% Cr3+ doping and the ferromagnetic nature is diminished with increasing the doping concentration to 5%. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low temperature Raman spectroscopic measurements on silver nitroprusside (AgNP), Ag-2Fe(CN)(5)NO] powders display reversible features of a partially converted metastable state. The results are compared with similarly observed metastable state in case of sodium nitroprusside (NaNP) and the differences have been discussed in terms of possible resistance to metastable state formation offered by silver atoms on the basis of hard soft acid base (HSAB) theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report synthesis of symmetrically and non-symmetrically functionalized fluoranthene-based blue fluorescent molecular materials for non-doped electroluminescent devices. The solid state structure of these fluorophores has been established by single crystal X-ray diffraction analysis. Furthermore, a detailed experimental and theoretical study has been performed to understand the effect of substitution of symmetric and non-symmetric functional groups on optical, thermal and electrochemical properties of fluoranthene. These materials exhibit a deep blue emission and high PLQY in solution and solid state. The vacuum deposited, non-doped electroluminescent devices with the device structure ITO/NPD (15 nm)/CBP (15 nm)/EML (40 nm)/TPBI (30 nm)/LiF (1 nm)/Al were fabricated and characterized. A systematic shift in the peak position of EL emission was observed from sky blue to bluish-green with EL maxima from 477 nm to 490 nm due to different functional groups on the periphery of fluoranthene. In addition, a high luminance of >= 2000 cd m(-2) and encouraging external quantum efficiency (EQE) of 1.1-1.4% were achieved. A correlation of the molecular structure with device performance has been established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoacoustic (PA) imaging of interphalangeal peripheral joints is of interest in the context of using the synovial membrane as a surrogate marker of rheumatoid arthritis. Previous work has shown that ultrasound (US) produced by absorption of light at the epidermis reflects on the bone surfaces within the finger. When the reflected signals are backprojected in the region of interest, artifacts are produced, confounding interpretation of the images. In this work, we present an approach where the PA signals known to originate from the epidermis are treated as virtual US transmitters, and a separate reconstruction is performed as in US reflection imaging. This allows us to identify the bone surfaces. Furthermore, the identification of the joint space is important as this provides a landmark to localize a region-of-interest in seeking the inflamed synovial membrane. The ability to delineate bone surfaces allows us to identify not only the artifacts but also the interphalangeal joint space without recourse to new US hardware or a new measurement. We test the approach on phantoms and on a healthy human finger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate a limited-view light sheet microscopy (LV-LSM) for three dimensional (3D) volume imaging. Realizing that longer and frequent image acquisition results in significant photo-bleaching, we have taken limited angular views (18 views) of the macroscopic specimen and integrated with maximum likelihood (ML) technique for reconstructing high quality 3D volume images. Existing variants of light-sheet microscopy require both rotation and translation with a total of approximately 10-fold more views to render a 3D volume image. Comparatively, LV-LSM technique reduces data acquisition time and consequently minimizes light-exposure by many-folds. Since ML is a post-processing technique and highly parallelizable, this does not cost precious imaging time. Results show noise-free and high contrast volume images when compared to the state-of-the-art selective plane illumination microscopy. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.