987 resultados para ischemic preconditioning


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Pulseless electrical activity (PEA) cardiac arrest is defined as a cardiac arrest (CA) presenting with a residual organized electrical activity on the electrocardiogram. In the last decades, the incidence of PEA has regularly increased, compared to other types of CA like ventricular fibrillation or pulseless ventricular tachycardia. PEA is frequently induced by reversible conditions. The "4 (or 5) H" & "4 (or 5) T" are proposed as a mnemonic to asses for Hypoxia, Hypovolemia, Hypo- /Hyperkalaemia, Hypothermia, Thrombosis (cardiac or pulmonary), cardiac Tamponade, Toxins, and Tension pneumothorax. Other pathologies (intracranial haemorrhage, severe sepsis, myocardial contraction dysfunction) have been identified as potential causes for PEA, but their respective probability and frequencies are unclear and they are not yet included into the resuscitation guidelines. The aim of this study was to analyse the aetiologies of PEA out-of-hospital CA, in order to evaluate the relative frequencies of each cause and therefore to improve the management of patients suffering a PEA cardiac arrest. Method: This retrospective study was based on data routinely and prospectively collected for each PEMS intervention. All adult patients treated from January 1st 2002 to December 2012 31st by the PEMS for out-of-hospital cardiac arrest, with PEA as the first recorded rhythm, and admitted to the emergency department (ED) of the Lausanne University Hospital were included. The aetiologies of PEA cardiac arrest were classified into subgroups, based on the classical H&T's classification, supplemented by four other subgroups analysis: trauma, intra-cranial haemorrhage (ICH), non-ischemic cardiomyopathy (NIC) and undetermined cause. Results: 1866 OHCA were treated by the PEMS. PEA was the first recorded rhythm in 240 adult patients (13.8 %). After exclusion of 96 patients, 144 patients with a PEA cardiac arrest admitted to the ED were included in the analysis. The mean age was 63.8 ± 20.0 years, 58.3% were men and the survival rate at 48 hours was 29%. 32 different causes of OHCA PEA were established for 119 patients. For 25 patients (17.4 %), we were unable to attribute a specific cause for the PEA cardiac arrest. Hypoxia (23.6 %), acute coronary syndrome (12.5%) and trauma (12.5 %) were the three most frequent causes. Pulmonary embolism, Hypovolemia, Intoxication and Hyperkaliemia occurs in less than 10% of the cases (7.6 %, 5.6 %, 3.5%, respectively 2.1 %). Non ischemic cardiomyopathy and intra-cranial haemorrhage occur in 8.3 % and 6.9 %, respectively. Conclusions: According to our results, intra-cranial haemorrhage and non-ischemic cardiomyopathy represent noticeable causes of PEA in OHCA, with a prevalence equalling or exceeding the frequency of classical 4 H's and 4 T's aetiologies. These two pathologies are potentially accessible to simple diagnostic procedures (native CT-scan or echocardiography) and should be included into the 4 H's and 4 T's mnemonic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results on the optimization of analytical methods for the determination of phosphorus in phosphino-polycarboxylate (PPCA), used frequently as scale inhibitor during oil production, by ICP-AES and ICP-MS are presented. Due to the complex matrix of production waters (brines) and their high concentration in inorganic phosphorus, the separation of organic phosphorus prior to its determination is necessary. In this work, minicolumns of silica immobilized C18 were used. Optimization of the separation step resulted in the following working conditions: (1) prewashing of the column with methanol (80% v/v); (2) use of a flow rate of 5 mL/min and 10 mL/min, respectively, for the preconditioning step and for percolation of the water sample; (3) final elution of organic phosphorus with 7 mL of buffer of H3BO3/NaOH (0.05 M, pH 9) with a flow rate of 1 mL/min. Sample detection limits (3s) for different combinations of nebulizers and spectrometric methods, based on 10 mL water aliquots, are: ICP-AES -Cross flow (47 mg/L) and Ultrasonic (18 mug/L); ICP-MS -Cross flow (1.2 mug/L), Cyclonic (0.7 mug/L) and Ultrasonic (0.5 mug/L). Typical recoveries of organic phosphorus are between 90 and 95% and the repeatability of the whole procedure is better than 10%. The developed methodology was applied successfully to samples from the oil-well NA 46, platform PNA 2, Campos basin, Brazil. Assessment of the PPCA inhibitor was possible at lower concentrations than achieved by current analytical methods, resulting in benefits such as reduced cost of chemicals, postponed oil production and lower environmental impacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arterial stiffness assessed by carotid-femoral pulse wave velocity (cfPWV) measurement is now well accepted as an independent predictor of vascular mortality and morbidity. However, the value of cfPWV has been considered to be limited for risk classification in patients with several vascular risk factors. Magnetic resonance (MR) allows measurement of PWV between two points, though to date mainly used to study the aorta. To assess the common carotid artery pulse wave velocity by magnetic resonance, determine their association with classical vascular risk factors and ischemic brain injury burden in patients with suspected ischemic cerebrovascular disease

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Children with sickle cell anemia (SCA) are at increased risk of stroke. Elevated blood-flow velocities in the middle cerebral artery detected by Transcranial Doppler (TCD) are a good predictor of stroke risk in these children. Velocities obtained by TCD are measured by using a specific parameter, the time-averaged mean of the maximum velocity (TAMM). Children with TAMM velocities ≥200 cm/sec are at high risk of stroke, and transfusions as primary prevention might be done. Transcranial Doppler-imaging (TCDI) is now widely available and it allows the visualization of intracranial vessels.Few studies have compared the TAMM in TCD and TCDI, and no studies have established a cutoff point for TAMM in TCDI equivalent to the STOP criteria of “normal”, “conditional” and “abnormal”, which could predict a high risk of stroke in children with SCAObjectives: To compare the TAMM velocity obtained by TCDI with the TAMM velocity obtained with TCD in the middle cerebral artery, and to determine a cutoff point for TAMM in TCDI that could predict a high risk of stroke in children with SCAMethods: This study is a cross-sectional study of a diagnostic test. 78 children with sickle cell anemia between 2 to 16 years will be evaluated with both TCD and TCDI in order to determinate the TAMM with the two devices. Velocities obtained with both Doppler techniques will be compared using an intraclass correlation coefficient

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most metazoans rely on aerobic energy production, which is dependent on adequate oxygen supply. In the case of reduced oxygen supply (hypoxia), the most profound changes in gene expression are mediated by transcription factors named hypoxia-inducible factors (HIF alpha). These proteins are post-translationally regulated by prolyl-4-hydroxylase (PHD) enzymes that are direct “sensors” of cellular oxygen levels. This thesis examines the molecular evolution of metazoan HIF systems. In early metazoans the HIF system emerged from pre-existing PHD oxygen sensors and early bHLH-PAS transcription factors. In invertebrates our analysis revealed an unexpected diversity of PHD genes and HIF alpha sequence characteristics. An early branching vertebrate, the epaulette shark (Hemiscyllium ocellatum) was chosen for sequencing and hypoxia preconditioning studies of HIF alpha and PHD genes. As no quantitative PCR reference genes were available, this thesis includes the first study of reference genes in cartilaginous fish species. Applying multiple statistical analysis we also discoveredthat commonly used reference gene software may perform poorly with some data sets. Novel reference genes allowed accurate measurements of the mRNAlevels of the studied target genes. Cartilaginous fishes have three genomic duplicates of both HIF alpha and PHD genes like mammals and teleost fishes. Combining functional divergence and selection analyses it was possible to describe how sequence changes in both HIF alpha and PHD duplicates may have contributed to the differential oxygen sensitivityof HIF alphas. Additionally, novel teleost HIF-1 alpha sequences were produced and used to reveal the molecular evolution of HIF-1 alpha in this lineage rich with hypoxia tolerant species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to characterize the cellular mechanisms leading to the beneficial effect of anti-oxidative gene therapy and pro-angiogenic stem cell therapy in acute peripheral ischemia. Post-ischemic events aim to re-establish tissue blood perfusion, to clear cellular debris, and to regenerate lost tissue by differentiation of satellite cells into myoblasts. Although leukocytes have an essential role in clearing cellular debris and promoting angiogenesis, they also contribute to tissue injury through excessive ROS production. First, we investigated the therapeutic properties of extracellular superoxide dismutase (SOD3) gene transfer. SOD3 was shown to reduce oxidative stress, to normalize glucose metabolism, and to enhance cell proliferation in the ischemic muscle. Analysis of the mitogenic Ras-Erk1/2 pathway showed SOD3 mediated induction offering a plausible explanation for enhanced cell proliferation. In addition, SOD3 reduced NF-κB activity by enhancing IκBα expression thus leading to reduced expression of inflammatory cytokines and adhesion molecules with consequent reduction in macrophage infiltration. Secondly, we sought to determine the fate and the effect of locally transplanted mesenchymal stem/stromal cells (MSCs) in acute ischemia. We showed that a vast majority of the transplanted cells are cleared from the injury site within 24 hours after local transplantation. Despite rapid clearance, transplantation was able to temporarily promote angiogenesis and cell proliferation in the muscle. Lack of graft-derived growth factor expression suggests other than secretory function to mediate this observed effect. In conclusion, both SOD3 and MSCs could be utilized to alleviate peripheral ischemia induced tissue injury. We have described a previously unidentified growth regulatory role for SOD3, and suggest a novel mechanism whereby transplanted MSCs enhance the reparative potential of the recipient tissue through physical contacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preterm birth is a risk for normal brain development. Brain maturation that normally happens in the uterus is in very preterm infants a developmental challenge during their stay in a neonatal intensive care unit (NICU). Typical brain injuries of preterm infants include ischemic injuries, brain haemorrhages, ventricular dilatation (VD), and reduced brain volumes. Brain injury is a serious complication of prematurity leading to possible long term consequences for the neurodevelopment of the very low birth weight (VLBW) infant, such as cerebral palsy (CP), hearing impairments, vision problems, and delay in cognitive development.There is a need for further studies to ascertain the potential risk factors and their causal relationships to brain vulnerability, growth and development in the increasing number of surviving VLBW infants. This thesis consists of four studies evaluating the definitions, causes and consequences of brain lesions in VLBW(<1500g) or very low gestationalage (VLGA) (gestational age <32 gestational weeks) infants. We showed that the redistribution of fetal blood flow is a risk factor for smaller brain volumes at term. In addition,we showed that brain lesions related to prematurity are not associated with increased spontaneous crying behaviour or circadian rhythm development in infancy. However, the preterm infants began to fuss more often and were held more than term infants at five months of age. Furthermore, we showed that VD is associated with brain lesions and smaller brain volumes. Therefore, brain magneticresonance imaging can be recommended for infants with VD. VD together with other brain pathology is a risk factor for the onset of developmental impairments in VLBW/VLGA infants at two years of age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adequate supply of oxygen is essential for the survival of multicellular organisms. However, in several conditions the supply of oxygen can be disturbed and the tissue oxygenation is compromised. This condition is termed hypoxia. Oxygen homeostasis is maintained by the regulation of both the use and delivery of oxygen through complex, sensitive and cell-type specific transcriptional responses to hypoxia. This is mainly achieved by one master regulator, a transcription factor called hypoxiainducible factor 1 (HIF-1). The amount of HIF-1 is under tight oxygen-dependent control by a family of oxygen-dependent prolyl hydroxylase domain proteins (PHDs) that function as the cellular oxygen sensors. Three family members (PHD1-3) are known to regulate HIF of which the PHD2 isoform is thought to be the main regulator of HIF-1. The supply of oxygen can be disturbed in pathophysiological conditions, such as ischemic disorders and cancer. Cancer cells in the hypoxic parts of the tumors exploit the ability of HIF-1 to turn on the mechanisms for their survival, resistance to treatment, and escape from the oxygen- and nutrient-deprived environment. In this study, the expression and regulation of PHD2 were studied in normal and cancerous tissues, and its significance in tumor growth. The results show that the expression of PHD2 is induced in hypoxic cells. It is overexpressed in head and neck squamous cell carcinomas and colon adenocarcinomas. Although PHD2 normally resides in the cytoplasm, nuclear translocation of PHD2 was also seen in a subset of tumor cells. Together with the overexpression, the nuclear localization correlated with the aggressiveness of the tumors. The nuclear localization of PHD2 caused an increase in the anchorage-independent growth of cancer cells. This study provides information on the role of PHD2, the main regulator of HIF expression, in cancer progression. This knowledge may prove to be valuable in targeting the HIF pathway in cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy(CADASIL) is the most common hereditary small vessel disease (SVD) leading to vascular dementia. The cause of the disease is mutations in NOTCH3 gene located at chromosome 19p13.1. The gene defect results in accumulation of granular osmiophilic material and extracellular domain of NOTCH3 at vascular smooth muscle cells (VSMCs) with subsequent degeneration of VSMCs. This arteriopathy leads to white matter (WM) rarefaction and multiple lacunar infarctions in both WM and deep grey matter (GM) visible in magnetic resonance imaging. This thesis is focused on the quantitative morphometric analysis of the stenosis and fibrosis in arterioles of the frontal cerebral WM, cortical GM and deep GM (lenticular nucleus (LN), i.e. putamen and globus pallidus). It was performed by assessing four indicators of arteriolar stenosis and fibrosis: (1) diameter of arteriolar lumen, (2) thickness of arteriolar wall, (3) external diameter of arterioles and (4) sclerotic index. These parameters were assessed (a) in 5 elderly CADASIL patients with the mean age of onset 47 years and of death 63 years, (b) in a 32-year-old young CADASIL patient with the first ischemic episode at the age of 29 years and (c) a very old CADASIL patient aged 95 years, who suffered the first stroke at the age of 71 years. These measurements were compared with age-matched controls without stroke, dementia, hypertension, and cerebral amyloid angiopathy. Morphometric analyses disclosed that in all age groups of CADASIL patients compared to corresponding controls there was significant narrowing of arteriolar lumen (stenosis) and fibrotic thickening of the walls (fibrosis) in the WM arterioles, although the significance of stenosis in the very old patient was marginal. In the LN arterioles there was only significant fibrosis without stenosis. These results suggest that the ischemic lesions and lacunar infarcts in the cerebral WM are mainly attributable to the stenosis of arterioles, whereas those in the LN are probably mainly due to hemodynamic changes of the cerebral blood flow. In conclusion: The SVD of CADASIL is characterized by narrowing of lumina and fibrotic thickening of walls predominantly in the cerebral WM arterioles. On the other hand, in the LN the ischemic lesions and lacunar infarcts are most probably hemodynamic due to impaired autoregulation caused by the rigidity of fibrotic arterioles. The pathological cerebral arteriolar alterations begin to develop already at a relatively young age but the onset may be delayed to a remarkably old age. This underlines the well known great variability in the clinical picture of CADASIL. The very late onset of CADASIL may cause its underdiagnosis, because the strokes are common in the elderly and are attributed to common risk factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation studies the signaling events mediated by the extracellular superoxide dismutase (SOD3). SOD3 is an antioxidant enzyme which converts the harmful superoxide into hydrogen peroxide. Overproduction of these reactive oxygen species (ROS) in the cellular environment as a result of tissue injury or impaired antioxidant defense system has detrimental effects on tissue integrity and function. However, especially hydrogen peroxide is also an important signaling agent. Ischemic injury in muscle causes acute oxidative stress and inflammation. We investigated the ability of SOD3 to attenuate ischemia induced inflammation and to promote recovery of skeletal muscle tissue. We found that SOD3 can downregulate the expression of several inflammatory cytokines and cell adhesion molecules thus preventing the accumulation of oxidant-producing inflammatory cells. Secondly, SOD3 was able to promote long-term activation of the mitogenic Erk pathway, but increased only briefly the activity of pro-survival Akt pathway at an early stage of ischemic inflammation, thus reducing apoptosis. SOD3 is a prominent antioxidant in the thyroid gland where oxidative stress is constantly present. We investigated the role of SOD3 in normal thyroid follicular cells and the changes in its expression in various hyperproliferative disorders. We first showed that SOD3 is TSH-responsive which indicated its participation in thyroid function. Its principal function seems to be in follicular cell proliferation since knockdown cells were deficient in proliferation. Additionally, it was overexpressed in goiter tissue. However, SOD3 was consistently downregulated in thyroid cancer cell lines and tissues. In conclusion, SOD3 is involved in tissue maintenance, cell proliferation and inflammatory cell migration. Its mechanisms of action are the activation of known proliferation/survival pathways, inhibition of apoptosis and regulation of adhesion molecule expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a complication of the laparoscopic technique for Heller cardiomyotomy and anterior fundoplication. This procedure is safe and provides excellent relief of disphagia in esophageal achalasia. Nevertheless, there are rare but dangerous complications, such as late active digestive bleeding, presented in this paper which was resistant to conservative treatment and led to hypovolemic shock. Urgent laparotomy performed to identify and control bleeding, revealed necrosis of esophageal mucosa with a bleeding gastric vessel. Inadequate exposure of the gastroesophageal junction and an incision very close to the lesser curvature might have damaged the esophageal branches of the left gastric artery, leading to ischemic necrosis of the mucosa and exposure of the gastric wall and its vessels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria are present in all eukaryotic cells. They enable these cells utilize oxygen in the production of adenosine triphosphate in the oxidative phosphorylation system, the mitochondrial respiratory chain. The concept ‘mitochondrial disease’ conventionally refers to disorders of the respiratory chain that lead to oxidative phosphorylation defect. Mitochondrial disease in humans can present at any age, and practically in any organ system. Mitochondrial disease can be inherited in maternal, autosomal dominant, autosomal recessive, or X-chromosomal fashion. One of the most common molecular etiologies of mitochondrial disease in population is the m.3243A>G mutation in the MT-TL1 gene, encoding mitochondrial tRNALeu(UUR). Clinical evaluation of patients with m.3243A>G has revealed various typical clinical features, such as stroke-like episodes, diabetes mellitus and sensorineural hearing loss. The prevalence and clinical characteristics of mitochondrial disease in population are not well known. This thesis consists of a series of studies, in which the prevalence and characteristics of mitochondrial disease in the adult population of Southwestern Finland were assessed. Mitochondrial haplogroup Uk was associated with increased risk of occipital ischemic stroke among young women. Large-scale mitochondrial DNA deletions and mutations of the POLG1 gene were the most common molecular etiologies of progressive external ophthalmoplegia. Around 1% of diabetes mellitus emerging between the ages 18 – 45 years was associated with the m.3243A>G mutation. Moreover, among these young diabetic patients, mitochondrial haplogroup U was associated with maternal family history of diabetes. These studies demonstrate the usefulness of carefully planned molecular epidemiological investigations in the study of mitochondrial disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To study the stenosis of the carotid arteries in patients with symptomatic peripheral arterial disease.Methods: we assessed 100 consecutive patients with symptomatic peripheral arterial disease in stages of intermittent claudication, rest pain or ulceration. Carotid stenosis was studied by echo-color-doppler, and considered significant when greater than or equal to 50%. We used univariate analysis to select potential predictors of carotid stenosis, later taken to multivariate analysis.Results: The prevalence of carotid stenosis was 84%, being significant in 40% and severe in 17%. The age range was 43-89 years (mean 69.78). Regarding gender, 61% were male and 39% female. Half of the patients had claudication and half had critical ischemia. Regarding risk factors, 86% of patients had hypertension, 66% exposure to smoke, 47% diabetes, 65% dyslipidemia, 24% coronary artery disease, 16% renal failure and 60% had family history of cardiovascular disease. In seven patients, there was a history of ischemic cerebrovascular symptoms in the carotid territory. The presence of cerebrovascular symptoms was statistically significant in influencing the degree of stenosis in the carotid arteries (p = 0.02 at overall assessment and p = 0.05 in the subgroups of significant and non-significant stenoses).Conclusion: the study of the carotid arteries by duplex scan examination is of paramount importance in the evaluation of patients with symptomatic peripheral arterial disease, and should be systematically conducted in the study of such patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells communicate, or signal, with each other constantly to ensure proper functioning of tissues and organs. Cell signaling is often performed by interplay of receptors and ligands that bind these receptors. ErbB receptors (epidermal growth factor receptors, EGFR, HER) bind extracellular growth factors and transduce these signals inside of cells. ErbB dysfunction promotes carcinogenesis, and also results in numerous defects during normal development. This study focused on the functions of one member of the ErbB receptor family, ErbB4, and growth factor, neuregulin-1 (NRG-1), that can bind and activate ErbB4. This study aimed to find novel functions of ErbB4 and NRG-1. Hypoxia, or deficiency of oxygen, is common in cancer and ischemic conditions. One of the key findings of the work was the identification and characterization of a cross-talk between ErbB4 and Hypoxia-inducible factor 1α (HIF-1α), the central mediator of hypoxia signaling. ErbB4 activation by NRG-1 was found to increase HIF-1α activity. Interestingly, this regulation occurred in reciprocal manner as HIF-1α was also able to increase protein levels of NRG-1 and ErbB4. Moreover, expression of NRG-1 and ErbB4 was associated with HIF activity in vivo in human clinical samples and in mice. Reduction of functional ErbB4 in developing zebrafish embryos resulted in defects in development of the skeletal muscles. To study ErbB4 functions in pathological situation in humans, clinical samples of serous ovarian carcinoma were analyzed using tissue microarrays and real-time RT-PCR. A specific isoform of ErbB4, CYT-1, was associated with poor survival in serous ovarian cancer and increased anchorage independent growth of ovarian cancer cells in vitro. These observations demonstrate that ErbB4 and NRG-1 are essential regulators of cellular response to hypoxia, of development, and of ovarian carcinogenesis.