964 resultados para fire exposure
Resumo:
Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, either using well-founded empirical relationships or process-based models with good predictive skill. A large variety of models exist today and it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project - FireMIP, an international project to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we summarise the current state-of-the-art in fire regime modelling and model evaluation, and outline what essons may be learned from FireMIP.
Resumo:
This paper presents an integrative and spatially explicit modeling approach for analyzing human and environmental exposure from pesticide application of smallholders in the potato producing Andean region in Colombia. The modeling approach fulfills the following criteria: (i) it includes environmental and human compartments; (ii) it contains a behavioral decision-making model for estimating the effect of policies on pesticide flows to humans and the environment; (iii) it is spatially explicit; and (iv) it is modular and easily expandable to include additional modules, crops or technologies. The model was calibrated and validated for the Vereda La Hoya and was used to explore the effect of different policy measures in the region. The model has moderate data requirements and can be adapted relatively easy to other regions in developing countries with similar conditions.
Resumo:
The aim of this study was to assess and improve the accuracy of biotransfer models for the organic pollutants (PCBs, PCDD/Fs, PBDEs, PFCAs, and pesticides) into cow’s milk and beef used in human exposure assessment. Metabolic rate in cattle is known as a key parameter for this biotransfer, however few experimental data and no simulation methods are currently available. In this research, metabolic rate was estimated using existing QSAR biodegradation models of microorganisms (BioWIN) and fish (EPI-HL and IFS-HL). This simulated metabolic rate was then incorporated into the mechanistic cattle biotransfer models (RAIDAR, ACC-HUMAN, OMEGA, and CKow). The goodness of fit tests showed that RAIDAR, ACC-HUMAN, OMEGA model performances were significantly improved using either of the QSARs when comparing the new model outputs to observed data. The CKow model is the only one that separates the processes in the gut and liver. This model showed the lowest residual error of all the models tested when the BioWIN model was used to represent the ruminant metabolic process in the gut and the two fish QSARs were used to represent the metabolic process in the liver. Our testing included EUSES and CalTOX which are KOW-regression models that are widely used in regulatory assessment. New regressions based on the simulated rate of the two metabolic processes are also proposed as an alternative to KOW-regression models for a screening risk assessment. The modified CKow model is more physiologically realistic, but has equivalent usability to existing KOW-regression models for estimating cattle biotransfer of organic pollutants.
Resumo:
New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.
Resumo:
South American seasonally-dry tropical forests (SDTF) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12,000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8,000 and 7,000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined, but severe regional droughts persisted through the mid-Holocene, SDTF, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTF are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.
Resumo:
Fire-centred studies have recently been highlighted as powerful avenues for investigation of energy flows and relations between humans, materials, environments and other species. The aim in this paper is to evaluate this potential first by reviewing the diverse theories and methods that can be applied to investigate the ecological and social significance of anthropogenic fire, and second by applying these to new and existing data sets in archaeology. This paper examines how fire-centred approaches can inform on one of the most significant step-changes in human lifeways and inter-relations with environment and other species – the transition from mobile hunting-gathering to more sedentary agriculture in a key heartland of change, the Zagros region of Iraq and Iran, c. 12,000–8,000 BP. In the review and case studies multiple links are investigated between human fire use and environment, ecology, energy use, technology, the built environment, health, social roles and relations, cultural practices and catastrophic events
Resumo:
Aerosol properties above clouds have been retrieved over the South East Atlantic Ocean during the fire season 2006 using satellite observations from POLDER (Polarization and Directionality of Earth Reflectances). From June to October, POLDER has observed a mean Above-Cloud Aerosol Optical Thickness (ACAOT) of 0.28 and a mean Above-Clouds Single Scattering Albedo (ACSSA) of 0.87 at 550 nm. These results have been used to evaluate the simulation of aerosols above clouds in 5 AeroCom (Aerosol Comparisons between Observations and Models) models (GOCART, HadGEM3, ECHAM5-HAM2, OsloCTM2 and SPRINTARS). Most models do not reproduce the observed large aerosol load episodes. The comparison highlights the importance of the injection height and the vertical transport parameterizations to simulate the large ACAOT observed by POLDER. Furthermore, POLDER ACSSA is best reproduced by models with a high imaginary part of black carbon refractive index, in accordance with recent recommendations.
Resumo:
Objectives: We investigated effects of chronic exposure (2 months) to ambient levels of particulate matter (PM) on development of protease-induced emphysema and pulmonary remodeling in mice. Methods: Balb/c mice received nasal drop of either papain or normal saline and were kept in two exposure chambers situated in an area with high traffic density. One of them received ambient air and the other had filters for PM. Results: mean concentration of PM10 was 2.68 +/- 0.38 and 33.86 +/- 2.09 mu g/m(3), respectively, in the filtered and ambient air chambers (p<0.001). After 2 months of exposure, lungs from papain-treated mice kept in the chamber with ambient air presented greater values of mean linear intercept, an increase in density of collagen fibers in alveolar septa and in expression of 8-isoprostane (p = 0.002, p < 0.05 and p = 0.002, respectively, compared to papain-treated mice kept in the chamber with filtered air). We did not observe significant differences between these two groups in density of macrophages and in amount of cells expressing matrix metalloproteinase-12. There were no significant differences in saline-treated mice kept in the two chambers. Conclusions: We conclude that exposure to urban levels of PM worsens protease-induced emphysema and increases pulmonary remodeling. We suggest that an increase in oxidative stress induced by PM exposure influences this response. These pulmonary effects of PM were observed only in mice with emphysema. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Fire management ran increase the biomass of some plant species at fire breaks in reserves of the Cerrado. For example, numerous and large patches of monkey-nuts (Anacardium humile, Anacardiaceae) provide abundant food resources for wildlife in the lower strata of savanna woodlands managed by fire. The objective of this study was to examine the exploitation of A. humile patches by birds in managed savanna woodlands (fire breaks) at Emas National Park, southwest Brazil. The relationship between flock size and the size of Anacardium patches were also investigated. Fire breaks were sampled in September and October 2006, when fruits and flowers were abundant. Ara ararauna was often recorded exploiting resources of Anacardium patches. This species and other psittacids (Amazona aestiva, Alipiopsittaca xanthops, and Diopsittaca nobilis) consumed seeds usually on the ground around fruiting patches. Members of Aratinga aurea flocks and Ramphastos toco consumed pseudo-fruits. Larger flocks detected were those of A. aurea and A. ararauna. Groups of A. ararauna that exploited larger patches tended to be larger than flocks that exploited smaller patches. This study suggests that intra- and interspecific interactions and characteristics of Anacardium patches and of the surrounding vegetation are involved in the feeding ecology of birds in the lower stratum of managed woodlands. Fruiting Anacardium patches attract numerous frugivorous birds to fire breaks at Emas National Park. Further research is needed to a better understanding of the influence of fire management on birds in the Cerrado. Accepted 31 July 2009.
Resumo:
Fire is an important factor in several ecosystems, affecting plant population biology. Campos grasslands are under constant influence of disturbance, mostly grazing and fire. However, few studies evaluated the effect of fire on plant population biology of grassland species. Therefore, we aim to analyze the effect of fire on the population biology of four species, from different functional groups and regeneration strategies: Chaptalia runcinata (forb, resprouter, absence of belowground organ), Vernonia flexuosa (forb, resprouter, presence of rhizophore), Eupatorium ligulaefolium (shrub, resprouter, presence of xylopodium) and Heterothalamus psiadioides (shrub, obligate seeder). Seven plots were established in different sites in southern Brazil: frequently burned (FB) and excluded from fire since 6 years (E). All plots were subjected to controlled burns during summer. Before experiments, populations were sampled. Further observations were carried out after 90 and after 360 days of fire experiments. In addition, we counted the number of seedlings and resprouters recruited after fire. Heat shock experiments were conducted with two species (H. psiadioides and V. flexuosa), as well as the study of the bud bank of the following species: E. ligulaefolium and V. flexuosa. The obligate seeder species had all individuals killed by fire and established only after 1 year. Resprouters, however, showed new stems immediately after fire. E. ligulaefolium and V. flexuosa showed only vegetative regeneration from belowground organs and more individuals in excluded sites 1 year after the fire. The bud bank of E. ligulaefolium tended to be larger in excluded sites, whilst V. flexuosa showed an opposite result. High temperatures did not enhance nor kill seeds from both studied species. Vegetative regeneration was the most important strategy for all studied species, except for H. psiadioides, the obligate seeder species. Fire thus, plays an important role on population structure and demography, being also important for plant recruitment.
Resumo:
Brazilian Campos grasslands are rich in species and the maintenance of its diversity and physiognomy is dependent on disturbance (e.g. fire and grazing) Nevertheless, studies about fire intensity and severity are inexistent. The present paper describes fire parameters, using 14 experimental burn plots in southern Brazil (30 degrees 02` to 30 degrees 04`S, and 51 degrees 06` to 51 degrees 09`W. 311masl). Two sites under different fire histories were chosen: frequently burned and excluded since six years. Experimental burning was performed during summer (2006-2007), when most burning takes place in these grasslands. The following parameters were measured: air temperature and moisture, vegetation height, wind speed, fuel (fine, coarse), fuel moisture, fire temperatures (soil level and at 50cm), ash, residuals, flame freight, fire duration: burning efficiency and fire intensity were later calculated. Fuel load varied from 0.39 to 1.44kg.m(-2). and correlated positively with both fire temperature and fire intensity. Fire temperatures ranged 47 to 537.5 degrees C. being higher in the excluded site Fire intensity was low compared to grassland elsewhere (36 5-319.5kW.m(-1)), differing significantly between sties Fine fuel was the variable that best explained fire intensity. The results on fire intensity and severity in Campos grasslands can be considered a pilot study, since plots were very small. However the data provided can help other researchers to get permission for experimentation using larger plots The results provide support for further studies about the effects of fire on grassland vegetation and for studies involving fire models and fire risk prediction
Resumo:
To elucidate the relationship between forest dynamics and fire frequency pollen percentages and charcoal amounts from a 120 cm long peat core and from samples of modern pollen rain were collected along a transect. The study site in southern Brazil is characterized by a species-rich mosaic of grassland-Araucaria forest. It is of crucial importance for management strategies for conservation to understand the development and maintenance of these vegetation mosaics including their sharp forest-grassland boundaries. During the late Holocene, considerable changes occurred in the area. From Anno Domini (AD) 1360 to 1410, the area was dominated by Campos (grassland) vegetation and fire was very common. From AD 1410 to 1500, Araucaria forest expanded and fire was less frequent. From AD 1500 to 1580, Campos grassland spread and the Araucaria forest ceased its development, apparently due to the increase of fire. From AD 1580 to 1935, after a decrease in fire frequency, Araucaria forest expanded again. From AD 1935 to the present, the Araucaria forest expanded while the Campos area decreased. Fire was very rare in this period. The results indicate a strong interaction of forest expansion, forming a mosaic of Campos and Araucaria forest, and the frequency of fire during the past 600 years. A possible collapse of the indigenous population following the post-Colombian colonization in southern Brazil after about AD 1550 may have caused a great reduction of fire frequency. The introduction of cattle (probably after AD 1780) and the resulting decrease of fire frequency might be the reason for forest expansion. Fire is probably the most important factor controlling the dynamics of the forest-grassland mosaics and the formation of sharp borders between these two vegetation types. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the present work, we sought to mimic the internal state changes in response to a predator threat by pharmacologically stimulating the brain circuit involved in mediating predator fear responses, and explored whether this stimulation would be a valuable unconditioned stimulus (US) in an olfactory fear conditioning paradigm (OFC). The dorsal premammillary nucleus (PMd) is a key brain structure in the neural processing of anti-predatory defensive behavior and has also been shown to mediate the acquisition and expression of anti-predatory contextual conditioning fear responses. Rats were conditioned by pairing the US, which was an intra-PMd microinjection of isoproterenol (ISO; beta-adrenoceptor agonist), with amyl acetate odor-the conditioned stimulus (CS). ISO (10 and 40 nmol) induced the acquisition of the OFC and the second-order association by activation of beta-1 receptors in the PMd. Furthermore, similar to what had been found for contextual conditioning to a predator threat, atenolol (beta-1 receptor antagonist) in the PMd also impaired the acquisition and expression of OFC promoted by ISO. Considering the strong glutamatergic projections from the PMd to the dorsal periaqueductal gray (dPAG), we tested how the glutamatergic blockade of the dPAG would interfere with the OFC induced by ISO. Accordingly, microinjections of NMDA receptor antagonist (AP5, 6 nmol) into the dPAG were able to block both the acquisition, and partially, the expression of the OFC. In conclusion, we have found that PMd beta-1 adrenergic stimulation is a good model to mimic predatory threat-induced internal state changes, and works as a US able to mobilize the same systems involved in the acquisition and expression of predator-related contextual conditioning. Neuropsychopharmacology (2011) 36, 926-939; doi:10.1038/npp.2010.231; published online 5 January 2011
Resumo:
The aim of this study was to investigate the chronic effects of palmitate on fatty acid (FA) oxidation, AMPK/ACC phosphorylation/activation, intracellular lipid accumulation, and the molecular Mechanisms involved in these processes in skeletal muscle cells. Exposure of L6 myotubes for 8 h to 200, 400, 600, and 800 mu M of palmitate did rot affect cel viability but significantly reduced FA oxidation by similar to 26.5%, similar to 43.5%, similar to 50%, and similar to 47%, respectively. Interestingly, this occurred despite significant increases in AMPK (similar to 2.5-fold) and ACC (similar to 3-fold) phosphorylation and in malonyl-CoA decarboxylase activity (similar to 38-60%). Low concentrations of palmitate (50-100 mu M) caused an increase (similar to 30%) in CPT-I activity. However, as the concentration of palmitate increased, CPT-I activity decreased by similar to 32% after exposure for 8 h to 800 mu M of palmitate. Although FA uptake was reduced (similar to 35%) in cells exposed to increasing, palmitate concentrations, intracellular lipid accumulation increased in a dose-dependent manner, reaching values similar to 2.3-, similar to 3-, and 4-fold higher than control in muscle cells exposed to 400, 600, and 800 mu M palmitate, respectively. Interestingly, myotubes exposed to 400 mu M of palmitate for 1h increased basal glucose uptake and glycogen synthesis by similar to 40%. However, as time of incubation in the presence of palmitate progressed from 1 to 8h, these increases were abolished and a time-dependent inhibition of insulin-stimulated glucose uptake (similar to 65%) and glycogen synthesis (30%) was observed in myotubes. These findings may help explain the dysfunctional adaptations that occur in glucose and FA Metabolism in skeletal muscle under conditions of chronically elevated circulating levels of non-esterified FAs. Such as in obesity and Type 2 Diabetes.