955 resultados para dynamic elastic modulus
Resumo:
PURPOSE OF REVIEW: HIV targets primary CD4(+) T cells. The virus depends on the physiological state of its target cells for efficient replication, and, in turn, viral infection perturbs the cellular state significantly. Identifying the virus-host interactions that drive these dynamic changes is important for a better understanding of viral pathogenesis and persistence. The present review focuses on experimental and computational approaches to study the dynamics of viral replication and latency. RECENT FINDINGS: It was recently shown that only a fraction of the inducible latently infected reservoirs are successfully induced upon stimulation in ex-vivo models while additional rounds of stimulation make allowance for reactivation of more latently infected cells. This highlights the potential role of treatment duration and timing as important factors for successful reactivation of latently infected cells. The dynamics of HIV productive infection and latency have been investigated using transcriptome and proteome data. The cellular activation state has shown to be a major determinant of viral reactivation success. Mathematical models of latency have been used to explore the dynamics of the latent viral reservoir decay. SUMMARY: Timing is an important component of biological interactions. Temporal analyses covering aspects of viral life cycle are essential for gathering a comprehensive picture of HIV interaction with the host cell and untangling the complexity of latency. Understanding the dynamic changes tipping the balance between success and failure of HIV particle production might be key to eradicate the viral reservoir.
Resumo:
The Benkelman Beam structural test of flexible pavements was replaced in 1976 by dynamic deflection testing with a model 400 Road Rater. The Road Rater is used to determine structural ratings of flexible pavements. New pavement construction in Iowa has decreased with a corresponding increase of restoration and rehabilitation. A method to determine structural ratings of layered systems and rigid pavements is needed to properly design overlay thickness. The objective of this research was to evaluate the feasibility of using the Road Rater to determine support values of layered systems and rigid pavements. This evaluation was accomplished by correlating the Road Rater with the Federal Highway Administration (FHWA) Thumper, a dynamic deflection testing device. Data were obtained with the Road Rater and Thumper at 411 individual test locations on 39 different structural sections ranging from 10" of PCC pavement and 25" of asphalt pavement to a newly graveled unpaved roadway. A high correlation between a 9000 pound Thumper deflection and the 1185 pound Road Rater deflection was obtained. A Road Rater modification has been completed to provide 2000 pound load inputs. The basin, defined by four sensors spaced at 1 foot intervals, resulting from the 2000 pound loading is being used to develop a graph for determining relative subgrade strengths. Road Rater deflections on rigid pavements are sufficient to support the potential for this technique.
Resumo:
This article describes a method for determining the polydispersity index Ip2=Mz/Mw of the molecular weight distribution (MWD) of linear polymeric materials from linear viscoelastic data. The method uses the Mellin transform of the relaxation modulus of a simple molecular rheological model. One of the main features of this technique is that it enables interesting MWD information to be obtained directly from dynamic shear experiments. It is not necessary to achieve the relaxation spectrum, so the ill-posed problem is avoided. Furthermore, a determinate shape of the continuous MWD does not have to be assumed in order to obtain the polydispersity index. The technique has been developed to deal with entangled linear polymers, whatever the form of the MWD is. The rheological information required to obtain the polydispersity index is the storage G′(ω) and loss G″(ω) moduli, extending from the terminal zone to the plateau region. The method provides a good agreement between the proposed theoretical approach and the experimental polydispersity indices of several linear polymers for a wide range of average molecular weights and polydispersity indices. It is also applicable to binary blends.
Resumo:
The Road Rater is a dynamic deflection measuring appa-ratus for flexible base pavements. The basic operating principle of the Road Rater is to impart a dynamic loading and measure the resultant movement of the pavement with velocity sensors. This data, when properly adjusted for temperature by use of a nomograph included in this report, can be used to determine pavement life expectancy and estimate overlay thickness required. Road Rater testing will be conducted in the spring, when pave-ments are in their weakest condition, until seasonal correction factors can be developed. The Road Rater does not have sufficient ram weight to effectively evaluate load carrying capacity of rigid pavements. All rigid pavements react similarly to Road Rater testing and generally deflect from 0.65 to 1.30 mils. Research will be continued to evaluate rigid pavements with the Road Rater, however. The Road Rater has proven to be a reliable, trouble free pavement evaluation machine. The deflection apparatus was originally front-mounted, but was rear-mounted during the winter of 1977-78. Since that time, van handling has greatly improved, and front suspension parts are no longer overstressed due to improper weight distribution. The Road Rater provides a fast, economical, nondestructive test method to evaluate flexible pavements. Road Rater test data can be used to predict pavement life, set priorities for asphaltic concrete resurfacing, and design asphaltic concrete overlays. Temperature and seasonal variations significantly affect Road Rater deflection readings and must be considered. A nomograph included in this report adjusts for temperature, but does not correct for seasonal effect. Road Rater testing will be conducted in the spring until seasonal correction factors can be developed. The Road Rater has not successfully evaluated rigid pavements, but research will continue in this area. 1. Recommendations for continuing Road Rater research, evaluation and application are as follows:A computer program should be established to reduce Road Rater raw data (Range and Sensor reading) to HR-178 Road Rater Dynamic Deflections For Determining Structural Rating Of Flexible Pavements mean deflection (mils) and/or structural rating. This computer printout would be similar to present friction testing printouts, and would greatly reduce Road Rater data reduction manpower needs and costs. 2. Seasonal variation study should continue to develop seasonal correction factors. Seasonal test roads will be studied concurrently with routine testing during 1979 to develop this relationship. All Road Rater testing will be conducted in the spring until the seasonal relationship is established. 3. An asphaltic concrete overlay design method should be established based on Road Rater de-flection readings. The AASHTO Interim Guide for Design of Pavement Structures 1972 will be used as a base document for this study. 4. AASHTO Structural numbers should be compared to Road Rater Structural Ratings during 1979 on asphaltic concrete overlay projects. This analysis will enable us to refine Road Rater evaluation of flexible pavements. Roads will be tested before resurfacing and several months
Resumo:
The major objective of this research project was to investigate how Iowa fly ashes influenced the chemical durability of portland cement based materials. Chemical durability has become an area of uncertainty because of the winter application of deicer salts (rock salts) that contain a significant amount of sulfate impurities. The sulfate durability testing program consisted of monitoring portland cement-fly ash paste, mortar and concrete test specimens that had been subjected to aqueous solutions containing various concentrations of salts (both sulfate and chloride). The paste and mortar specimens were monitored for length as a function of time. The concrete test specimens were monitored for length, relative dynamic modulus and mass as a function of time. The alkali-aggregate reactivity testing program consisted of monitoring the expansion of ASTM C311 mortar bar specimens that contained three different aggregates (Pyrex glass, Oreapolis and standard Ottawa sand). The results of the sulfate durability study indicated that the paste and concrete test specimens tended to exhibit surface spalling but only very slow expansive tendencies. This suggested that the permeability of the test specimens was controlling the rate of deterioration. Concrete specimens are still being monitored because the majority of the test specimens have expanded less than 0.05%; hence, this makes it difficult to estimate the service life of the concrete test specimens or to quantify the performance of the different fly ashes that were used in the study. The results of the mortar bar studies indicated that the chemical composition of the various fly ashes did have an influence on their sulfate resistance. Typically, Clinton and Louisa fly ashes performed the best, followed by the Ottumwa, Neal 4 and then Council Bluffs fly ashes. Council Bluffs fly ash was the only fly ash that consistently reduced the sulfate resistance of the many different mortar specimens that were investigated during this study. None of the trends that were observed in the mortar bar studies have yet become evident in the concrete phase of this project. The results of the alkali-aggregate study indicated that the Oreapolis aggregate is not very sensitive to alkali attack. Two of the fly ashes, Council Bluffs and Ottumwa, tended to increase the expansion of mortar bar specimens that contained the Oreapolis aggregate. However, it was not clear if the additional expansion was due to the alkali content of the fly ash, the periclase content of the fly ash or the cristobalite content of the fly ash, since all three of these factors have been found to influence the test results.
Resumo:
Over the years, the Iowa Department of Transportation has established an outstanding network of connector highways across the state of Iowa. Construction and paving of these primary roadways has essentially been completed. Unfortunately, many of these primary highway pavements are reaching their design life and are in need of rehabilitation. The emphasis, therefore, has shifted from the construction of new highways to the maintenance and rehabilitation of existing highways. The Iowa DOT in recent years has become more concerned with preventing the ingress of surface water into the pavement structure. Crack sealing is receiving greater emphasis. Specifications have been modified to require improved low modulus crack and joint sealing materials.
Resumo:
This is Part 3 of a study of creep and resilient modulus testing of hot mix asphalt concrete. The creep and resilient modulus testing in Part 1 showed the improved load carrying characteristics of crushed particles. Cores from pavements drilled in Part 2 exhibited a poor correlation with rutting and creep/resilient modulus on pavement with a range of rut depths. The objective of Part 3 was to determine the relationship of creep and resilient modulus for 1) Marshall specimens from laboratory mixing for mix design; 2) Marshall specimens from construction plant mixing; and 3) cores drilled from the hot mixed asphalt pavement. The creep and resilient modulus data from these three sources exhibited substantial variations. No meaningful correlations of the results from these three sources were obtained.
Resumo:
The molecular chaperone Hsp90-dependent proteome represents a complex protein network of critical biological and medical relevance. Known to associate with proteins with a broad variety of functions termed clients, Hsp90 maintains key essential and oncogenic signalling pathways. Consequently, Hsp90 inhibitors are being tested as anti-cancer drugs. Using an integrated systematic approach to analyse the effects of Hsp90 inhibition in T-cells, we quantified differential changes in the Hsp90-dependent proteome, Hsp90 interactome, and a selection of the transcriptome. Kinetic behaviours in the Hsp90-dependent proteome were assessed using a novel pulse-chase strategy (Fierro-Monti et al., accompanying article), detecting effects on both protein stability and synthesis. Global and specific dynamic impacts, including proteostatic responses, are due to direct inhibition of Hsp90 as well as indirect effects. As a result, a decrease was detected in most proteins that changed their levels, including known Hsp90 clients. Most likely, consequences of the role of Hsp90 in gene expression determined a global reduction in net de novo protein synthesis. This decrease appeared to be greater in magnitude than a concomitantly observed global increase in protein decay rates. Several novel putative Hsp90 clients were validated, and interestingly, protein families with critical functions, particularly the Hsp90 family and cofactors themselves as well as protein kinases, displayed strongly increased decay rates due to Hsp90 inhibitor treatment. Remarkably, an upsurge in survival pathways, involving molecular chaperones and several oncoproteins, and decreased levels of some tumour suppressors, have implications for anti-cancer therapy with Hsp90 inhibitors. The diversity of global effects may represent a paradigm of mechanisms that are operating to shield cells from proteotoxic stress, by promoting pro-survival and anti-proliferative functions. Data are available via ProteomeXchange with identifier PXD000537.
Resumo:
The objective of this work was to study the fruit compression behavior aiming to develop new tomato packages. Deformations caused by compression forces were observed inside packages and in individual 'Santa Clara' tomato fruit. The forces applied by a transparent acrylic lever to the fruit surface caused pericarp deformation and the flattened area was proportional to the force magnitude. The deformation was associated to the reduction in the gas volume (Vg), caused by expulsion of the air from the loculus cavity and reduction in the intercellular air volume of the pericarp. As ripening advanced, smaller fractions of the Vg reduced by the compressive force were restored after the stress was relieved. The lack of complete Vg restoration was an indication of permanent plastic deformations of the stressed cells. Vg regeneration (elastic recovery) was larger in green fruits than in the red ones. The ratio between the applied force and the flattened area (flattening pressure), which depends on cell turgidity, decreased during ripening. Fruit movements associated with its depth in the container were observed during storage in a transparent glass container (495 x 355 x 220 mm). The downward movement of the fruits was larger in the top layers because these movements seem to be driven by a summation of the deformation of many fruits in all layers.
Resumo:
This paper presents the results of the static and dynamic testing of a three-span continuous I-beam highway bridge. Live load stress frequency curves for selected points are shown, and the static and dynamic load distribution to the longitudinal composite beam members are given. The bridge has four traffic lanes with a roadway width of 48 ft. Six longitudinal continuous WF beams act compositely with the reinforced concrete slab to carry the live load. The beams have partial length cover plates at the piers. Previous research has indicated that beams with partial length cover plates have a very low fatigue strength. It was found in this research that the magnitude of the stresses due to actual highway loads were very much smaller than those computed from specification loading. Also, the larger stresses which were measured occurred a relatively small number of times. These data indicate that some requirements for reduced allowable stresses at the ends of cover plates are too conservative. The load distribution to the longitudinal beams was determined for static and moving loads and includes the effect of impact on the distribution. The effective composite section was found at various locations to evaluate the load distribution data. The composite action was in negative as well as positive moment regions. The load distribution data indicate that the lateral distribution of live load is consistent with the specifications, but that there is longitudinal distribution, and therefore the specifications are too conservative.
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges are scheduled for removal. Five of these are old high-truss single-lane bridges, each bridge having several simple spans. The other bridge is a fairly modern (1955) double 4-span continuous beam-and-slab composite highway bridge. The availability of these bridges affords an unusual opportunity for study of the behavior of full-scale bridges. Because of the magnitude of the potential testing program, a feasibility study was initiated and the results are presented in this two-part final report. Part I summarizes the findings and Part II presents the supporting detailed information.
Resumo:
The Road Rater is a dynamic deflection measuring apparatus for flexible base pavements. The Road Rater replaces the Benkelman Beam which was last used by the Iowa DOT in 1977. Road Rater test results correlate reasonably well (correlation coefficient = 0.83) with Benkelman Beam test data. The basic differences between the Road Rater and Benkelman Beam are as follows: 1. The Benkelman Beam uses a static 18,000 lb. load while the Road Rater uses a dynamic 800 to 2,000 lb. loading. 2. The Road Rater tests much faster and more economically than the Benkelman Beam. 3. The Road Rater better simulates a moving truck than the Benkelman Beam. The basic operating principle of the Road Rater is to impart a dynamic loading and measure the resultant movement of the pavement with velocity sensors. This data, when properly adjusted for temperature by use of a nomograph included in this report, can be used to determine pavement life expectancy and estimate overlay thickness required. Road Rater testing will be conducted in the spring, when pavements are in their weakest condition, until seasonal correction factors can be developed. The Road Rater does not have sufficient ram weight to effectively evaluate load carrying capacity of rigid pavements. All rigid pavements react similarly to Road Rater testing and generally deflect from 0.65 to 1.30 mils. Research will be contined to evaluate rigid pavements with the Road Rater, however. The Road Rater has proven to be a reliable, troublefree pavement evaluation machine. The deflection apparatus was originally front-mounted,but was rear-mounted during the winter of 1977-78. Since that time, van handling has greatly improved, and front suspension parts are no longer overstressed due to improper weight distribution.
Resumo:
The design of satisfactory supporting and expansion devices for highway bridges is a problem which has concerned bridge design engineers for many years. The problems associated with these devices have been emphasized by the large number of short span bridges required by the current expanded highway program of expressways and interstate highways. The initial objectives of this investigation were: (1) To review and make a field study of devices used for the support of bridge superstructures and for provision of floor expansion; (2) To analyze the forces or factors which influence the design and behavior of supporting devices and floor expansion systems; and (3) To ascertain the need for future research particularly on the problems of obtaining more economical and efficient supporting and expansion devices, and determining maximum allowable distance between such devices. The experimental portion was conducted to evaluate one of the possible simple and economical solutions to the problems observed in the initial portion. The investigation reported herein is divided into four major parts or phases as follows: (1) A review of literature; (2) A survey by questionnaire of design practice of a number of state highway departments and consulting firms; (3) Field observation of existing bridges; and, (4) An experimental comparison of the dynamic behavior of rigid and elastomeric bearings.