935 resultados para dry eyes
Resumo:
To validate clinically an algorithm for correcting the error in the keratometric estimation of corneal power by using a variable keratometric index of refraction (nk) in a normal healthy population.
Resumo:
Purpose: To define a range of normality for the vectorial parameters Ocular Residual Astigmatism (ORA) and topography disparity (TD) and to evaluate their relationship with visual, refractive, anterior and posterior corneal curvature, pachymetric and corneal volume data in normal healthy eyes. Methods: This study comprised a total of 101 consecutive normal healthy eyes of 101 patients ranging in age from 15 to 64 years old. In all cases, a complete corneal analysis was performed using a Scheimpflug photography-based topography system (Pentacam system Oculus Optikgeräte GmbH). Anterior corneal topographic data were imported from the Pentacam system to the iASSORT software (ASSORT Pty. Ltd.), which allowed the calculation of the ocular residual astigmatism (ORA) and topography disparity (TD). Linear regression analysis was used for obtaining a linear expression relating ORA and posterior corneal astigmatism (PCA). Results: Mean magnitude of ORA was 0.79 D (SD: 0.43), with a normality range from 0 to 1.63 D. 90 eyes (89.1%) showed against-the-rule ORA. A weak although statistically significant correlation was found between the magnitudes of posterior corneal astigmatism and ORA (r = 0.34, p < 0.01). Regression analysis showed the presence of a linear relationship between these two variables, although with a very limited predictability (R2: 0.08). Mean magnitude of TD was 0.89 D (SD: 0.50), with a normality range from 0 to 1.87 D. Conclusion: The magnitude of the vector parameters ORA and TD is lower than 1.9 D in the healthy human eye.
Resumo:
Background To evaluate the intraocular lens (IOL) position by analyzing the postoperative axis of internal astigmatism as well as the higher-order aberration (HOA) profile after cataract surgery following the implantation of a diffractive multifocal toric IOL. Methods Prospective study including 51 eyes with corneal astigmatism of 1.25D or higher of 29 patients with ages ranging between 20 and 61 years old. All cases underwent uneventful cataract surgery with implantation of the AT LISA 909 M toric IOL (Zeiss). Visual, refractive and corneal topograpy changes were evaluated during a 12-month follow-up. In addition, the axis of internal astigmatism as well as ocular, corneal, and internal HOA (5-mm pupil) were evaluated postoperatively by means of an integrated aberrometer (OPD Scan II, Nidek). Results A significant improvement in uncorrected distance and near visual acuities (p < 0.01) was found, which was consistent with a significant correction of manifest astigmatism (p < 0.01). No significant changes were observed in corneal astigmatism (p = 0.32). With regard to IOL alignment, the difference between the axes of postoperative internal and preoperative corneal astigmatisms was close to perpendicularity (12 months, 87.16° ± 7.14), without significant changes during the first 6 months (p ≥ 0.46). Small but significant changes were detected afterwards (p = 0.01). Additionally, this angular difference correlated with the postoperative magnitude of manifest cylinder (r = 0.31, p = 0.03). Minimal contribution of intraocular optics to the global magnitude of HOA was observed. Conclusions The diffractive multifocal toric IOL evaluated is able to provide a predictable astigmatic correction with apparent excellent levels of optical quality during the first year after implantation.
Resumo:
Background To analyze and compare the relationship between anterior and posterior corneal shape evaluated by a tomographic system combining the Scheimpflug photography and Placido-disc in keratoconus and normal healthy eyes, as well as to evaluate its potential diagnostic value. Methods Comparative case series including a sample of 161 eyes of 161 subjects with ages ranging from 7 to 66 years and divided into two groups: normal group including 100 healthy eyes of 100 subjects, and keratoconus group including 61 keratoconus eyes of 61 patients. All eyes received a comprehensive ophthalmologic examination including an anterior segment analysis with the Sirius system (CSO). Antero-posterior ratios for corneal curvature (k ratio) and shape factor (p ratio) were calculated. Logistic regression analysis was used to evaluate if some antero–posterior ratios combined with other clinical parameters were predictors of the presence of keratoconus. Results No statistically significant differences between groups were found in the antero–posterior k ratios for 3-, 5- and 7-mm diameter corneal areas (p ≥ 0.09). The antero–posterior p ratio for 4.5- and 8-mm diameter corneal areas was significantly higher in the normal group than in the keratoconus group (p < 0.01). The k ratio for 3, 5, and 7 mm was significantly higher in the keratoconus grade IV subgroup than in the normal group (p < 0.01). Furthermore, significant differences were found in the p ratio between the normal group and the keratoconus grade II subgroup (p ≤ 0.01). Finally, the logistic regression analysis identified as significant independent predictors of the presence of keratoconus (p < 0.01) the 8-mm anterior shape factor, the anterior chamber depth, and the minimal corneal thickness. Conclusions The antero-posterior k and p ratios are parameters with poor prediction ability for keratoconus, in spite of the trend to the presence of more prolate posterior corneal surfaces compared to the anterior in keratoconus eyes.
Resumo:
Purpose: To calculate theoretically the errors in the estimation of corneal power when using the keratometric index (nk) in eyes that underwent laser refractive surgery for the correction of myopia and to define and validate clinically an algorithm for minimizing such errors. Methods: Differences between corneal power estimation by using the classical nk and by using the Gaussian equation in eyes that underwent laser myopic refractive surgery were simulated and evaluated theoretically. Additionally, an adjusted keratometric index (nkadj) model dependent on r1c was developed for minimizing these differences. The model was validated clinically by retrospectively using the data from 32 myopic eyes [range, −1.00 to −6.00 diopters (D)] that had undergone laser in situ keratomileusis using a solid-state laser platform. The agreement between Gaussian (PGaussc) and adjusted keratometric (Pkadj) corneal powers in such eyes was evaluated. Results: It was found that overestimations of corneal power up to 3.5 D were possible for nk = 1.3375 according to our simulations. The nk value to avoid the keratometric error ranged between 1.2984 and 1.3297. The following nkadj models were obtained: nkadj= −0.0064286r1c + 1.37688 (Gullstrand eye model) and nkadj = −0.0063804r1c + 1.37806 (Le Grand). The mean difference between Pkadj and PGaussc was 0.00 D, with limits of agreement of −0.45 and +0.46 D. This difference correlated significantly with the posterior corneal radius (r = −0.94, P < 0.01). Conclusions: The use of a single nk for estimating the corneal power in eyes that underwent a laser myopic refractive surgery can lead to significant errors. These errors can be minimized by using a variable nk dependent on r1c.