997 resultados para creek monitoring
Resumo:
Monitoring the environment with acoustic sensors is an effective method for understanding changes in ecosystems. Through extensive monitoring, large-scale, ecologically relevant, datasets can be produced that can inform environmental policy. The collection of acoustic sensor data is a solved problem; the current challenge is the management and analysis of raw audio data to produce useful datasets for ecologists. This paper presents the applied research we use to analyze big acoustic datasets. Its core contribution is the presentation of practical large-scale acoustic data analysis methodologies. We describe details of the data workflows we use to provide both citizen scientists and researchers practical access to large volumes of ecoacoustic data. Finally, we propose a work in progress large-scale architecture for analysis driven by a hybrid cloud-and-local production-grade website.
Resumo:
Directors of nonprofits in most countries have legal responsibility for monitoring organisational performance (Brody 2010), although there is typically little guidance on how this should occur. The balanced scorecard (BSC) (Kaplan & Norton, 1996, 2001) potentially provides boards with a monitoring tool (Kaplan $ Norton, 2006; Lorsch, 2002). The BSC is intended to help integrate performance measurement, performance management and strategy implmentation (Kaplan 2009). The scorecards is balanced in that it should incorporate both financial and non-financial measures, external and internal perspectives, short and long-term objectives and both lagging and leading indicators. It is a relatively simple tool, but with potentially profound implications for directing board attention and sbusequent action (Ocasio, 1997; Salterio, 2012).
Resumo:
Targeted monitoring of threatened species within plantations is becoming more important due to forest certification programmes’ requirement to consider protection of threatened species, and to increase knowledge of the distribution of species. To determine patterns of long-tailed bat (Chalinolobus tuberculatus) activity in different habitat structures, with the aim of improving the likelihood of detection by targeting monitoring, we monitored one stand of 26 year-old Pinus radiata over seven months between December 2007 and June 2008 in Kinleith Forest, an exotic plantation forest centred around Tokoroa, South Waikato, New Zealand. Activity was determined by acoustic recording equipment, which is able to detect and record bats’ echolocation calls. We monitored activity from sunset to sunrise along a road through the stand, along stand edges, and in the interior of the stand. Bats were recorded on 80% of the 35 nights monitored. All activity throughout the monitoring period was detected on the edge of the stand or along the road. No bats were detected within the interior of the stand. Bat activity was highest along the road through the stand (40.4% of all passes), followed by an edge with stream running alongside (35.2%), along the road within a skidsite (19.8%), and along an edge without a stream (4.6%). There was a significant positive relationship between bat pass rate (bat passes h-1) and the feeding buzz rate (feeding buzzes h-1) indicating that bat activity was associated with feeding and not just commuting. Bat feeding activity was also highest along the road through the stand (59.2% of feeding buzzes), followed by the road within the skidsite (30.6%), and along the stream-side edge (10.2%). No feeding buzzes were recorded in either the interior or along the edge without the stream. Differences in overall feeding activity were significant only between the road and edge and between edges with and without a stream. Bat activity was detected each month and always by the second night of monitoring, and in this stand was highest during April. We recommend targeted monitoring for long-tailed bats be focused on road-side and stand edge habitat, and along streams, and that monitoring take place for at least three nights to maximise probability of detection.
Resumo:
Bats are an important component of mammalian biodiversity and fill such a wide array of ecological niches that they may offer an important multisensory bioindicator role in assessing ecosystem health. There is a need to monitor population trends of bats for their own sake because many populations face numerous environmental threats related to climate change, habitat loss, fragmentation, hunting, and emerging diseases. To be able to establish bat ultrasonic biodiversity trends as a reliable indicator, it is important to standardize monitoring protocols, data management, and analyses. This chapter discusses the main issues to be considered in developing a bat ultrasonic indicator. It focuses on the results from indicator bats program (iBats), a system for the global acoustic monitoring of bats, in Eastern Europe. Finally, the chapter reviews the strengths and weaknesses of the Program and considers the opportunities and threats that it may face in the future.
Resumo:
In this paper we present research adapting a state of the art condition-invariant robotic place recognition algorithm to the role of automated inter- and intra-image alignment of sensor observations of environmental and skin change over time. The approach involves inverting the typical criteria placed upon navigation algorithms in robotics; we exploit rather than attempt to fix the limited camera viewpoint invariance of such algorithms, showing that approximate viewpoint repetition is realistic in a wide range of environments and medical applications. We demonstrate the algorithms automatically aligning challenging visual data from a range of real-world applications: ecological monitoring of environmental change, aerial observation of natural disasters including flooding, tsunamis and bushfires and tracking wound recovery and sun damage over time and present a prototype active guidance system for enforcing viewpoint repetition. We hope to provide an interesting case study for how traditional research criteria in robotics can be inverted to provide useful outcomes in applied situations.
Resumo:
A system for monitoring conditions in a remote environment. The system comprising a data transmission network including a plurality of data sensing nodes. Each data sensing node includes an environment sensing means for periodically sensing the environment around node, a transmission means for periodic wireless transmission of sensed data to adjacent data sensing nodes. These adjacent data sensing nodes combining their sensed data with the received data from other data sensing nodes and on transmit the combined data.
Resumo:
Experimental work could be conducted in either laboratory or at field site. Generally, the laboratory experiments are carried out in an artificial setting and with a highly controlled environment. By contrast, the field experiments often take place in a natural setting, subject to the influences of many uncontrolled factors. Therefore, it is necessary to carefully assess the possible limitations and appropriateness of an experiment before embarking on it. In this paper, a case study of field monitoring of the energy performance of air conditioners is presented. Significant challenges facing the experimental work are described. Lessons learnt from this case study are also discussed. In particular, it was found that on-going analysis of the monitoring data and the correction of abnormal issues are two of the keys for a successful field test program. It was also shown that the installation of monitoring systems could have a significant impact on the accuracy of the data being collected. Before monitoring system was set up to collect monitoring data, it is recommended that an initial analysis of sample monitored data should be conducted to make sure that the monitoring data can achieve the expected precision. In the case where inevitable inherent errors were induced from the installation of field monitoring systems, appropriate remediation may need to be developed and implemented for the improved accuracy of the estimation of results. On-going analysis of monitoring data and correction of any abnormal issues would be the key to a successful field test program.
Resumo:
One of the main challenges facing online and offline path planners is the uncertainty in the magnitude and direction of the environmental energy because it is dynamic, changeable with time, and hard to forecast. This thesis develops an artificial intelligence for a mobile robot to learn from historical or forecasted data of environmental energy available in the area of interest which will help for a persistence monitoring under uncertainty using the developed algorithm.