994 resultados para cool


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution record of radiolarian faunal changes from Site Y8 south of the Subtropical Front (STF), offshore eastern New Zealand, provides insight into the paleoceanographic history of the last 265 kyrs. Quantitative analysis of radiolarian paleotemperature indicators and radiolarian-based sea surface temperature (SST) estimates reveal distinct shifts during glacial-interglacial (G-I) climate cycles encompassing marine isotope stages (MIS) 8-1. Faunas at Site Y8 are abundant and diverse and consist of a mixture of species typical of the subantarctic, transitional and subtropical zones which is characteristic of subantarctic waters just south of the STF. During interglacials, diverse radiolarian faunas have increased numbers of warm-water taxa (not, vert, similar 15%) while cool-water taxa decrease to not, vert, similar 11% of the assemblage. Warmest climate conditions occurred during MIS 5.5 and the early Holocene Climatic Optimum (HCO) at the onset of MIS 1 where SSTs reach maxima of 12.8 and 12.9 °C, respectively. This suggests that temperatures during the HCO were comparable to the Eemian, one of the warmest interglacial intervals of the Late Quaternary. Glacials are characterized by less diverse radiolarian faunas with cool-water taxa increasing to 49% of the assemblage. Coolest climate conditions occurred in MIS 4 and 2 where SSTs are reduced to 5.4 °C and 4.3 °C, respectively. Radiolarian faunal changes and SST estimates clearly identify major water masses and oceanic fronts in the offshore eastern New Zealand area. During warmest MIS 5.5 and early MIS 1 substantial influence of northern-sourced Subtropical Surface Water (STW) is evident at Site Y8. This implies southward incursions of STW around the eastern crest of Chatham Rise with the STF displaced towards higher latitudes and spinning off eddies as far south as Campbell Plateau. Additionally, increased flow of the Southland Current (SC) might have enhanced the local occurrence of warm-water radiolarians derived from the subtropical Tasman Sea. Coolest glacials are marked by a strong inflow of cool, southern-sourced waters at Site Y8 indicating a more vigorous flow along the Subantarctic Front (SAF).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During our Herschel Lensing Survey (HLS) of massive galaxy clusters, we have discovered an exceptionally bright source behind the z = 0.22 cluster Abell 773, which appears to be a strongly lensed submillimeter galaxy (SMG) at z = 5.2429. This source is unusual compared to most other lensed sources discovered by Herschel so far, because of its higher submm flux (∼200 mJy at 500 μm) and its high redshift. The dominant lens is a foreground z = 0.63 galaxy, not the cluster itself. The source has a far-infrared (FIR) luminosity of L_FIR = 1.1 × 10^14/μ L_⨀, where μ is the magnification factor, likely ∼11. We report here the redshift identification through CO lines with the IRAM-30 m, and the analysis of the gas excitation, based on CO(7–6), CO(6–5), CO(5–4) detected at IRAM and the CO(2–1) at the EVLA. All lines decompose into a wide and strong red component, and a narrower and weaker blue component, 540 km s^−1 apart. Assuming the ultraluminous galaxy (ULIRG) CO-to-H_2 conversion ratio, the H_2 mass is 5.8×10^11/μ M_⨀, of which one third is in a cool component. From the CI(^3P_2−^3 P_1) line we derive a C_I/H_2 number abundance of 6 × 10^−5 similar to that in other ULIRGs. The H_2O_p(2, 0, 2−1, 1, 1) line is strong only in the red velocity component, with an intensity ratio I(H_2O)/I(CO) ∼ 0.5, suggesting a strong local FIR radiation field, possibly from an active nucleus (AGN) component. We detect the [NII]205 μm line for the first time at high-z. It shows comparable blue and red components, with a strikingly broad blue one, suggesting strong ionized gas flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1-xSnx alloy nanowires, with a Sn incorporation up to 9.2[thinsp]at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour-liquid-solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230[thinsp][deg]C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxygen minimum zone (OMZ) of the late Quaternary California margin experienced abrupt and dramatic changes in strength and depth in response to changes in intermediate water ventilation, ocean productivity, and climate at orbital through millennial time scales. Expansion and contraction of the OMZ is exhibited at high temporal resolution (107-126 year) by quantitative benthic foraminiferal assemblage changes in two piston cores forming a vertical profile in Santa Barbara Basin (569 m, basin floor; 481 m, near sill depth) to 34 and 24 ka, respectively. Variation in the OMZ is quantified by new benthic foraminiferal groupings and new dissolved oxygen index based on documented relations between species and water-mass oxygen concentrations. Foraminiferal-based paleoenvironmental assessments are integrated with principal component analysis, bioturbation, grain size, CaCO3, total organic carbon, and d13C to reconstruct basin oxygenation history. Fauna responded similarly between the two sites, although with somewhat different magnitude and taxonomic expression. During cool episodes (Younger Dryas and stadials), the water column was well oxygenated, most strongly near the end of the glacial episode (17-16 ka; Heinrich 1). In contrast, the OMZ was strong during warm episodes (Bølling/Allerød, interstadials, and Pre-Boreal). During the Bølling/Allerød, the OMZ shoaled to <360 m of contemporaneous sea level, its greatest vertical expansion of the last glacial cycle. Assemblages were then dominated by Bolivina tumida, reflecting high concentrations of dissolved methane in bottom waters. Short decadal intervals were so severely oxygen-depleted that no benthic foraminifera were present. The middle to late Holocene (6-0 ka) was less dysoxic than the early Holocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variations in chalcophile and redox-sensitive trace elements are examined at high-resolution intervals from a ~50 kyr long sediment core (MD02-2496) from the Vancouver Island margin. Enrichments of Ag, Cd, Re, U, and Mo above lithogenous levels, signifying sedimentary suboxia and anoxia, occurred during the early Holocene and Bølling/Allerød, and during warm interstadial events of Marine Isotope Stage (MIS) 3. Down-core trace element profiles co-vary with productivity proxy records (opal, CaCO3, and marine organic carbon), and with sedimentary nitrogen isotope ratios, which reflect variably enriched nitrate upwelled from intermediate waters that were transported northward from the Eastern Tropical North Pacific. The similarity of the MD02-2496 record with records from the southern portion of the California Current System (CCS), and to the Greenland ice core oxygen isotope record during warm climate intervals, suggests that sedimentary redox conditions along the California Current responded to local productivity, to North Atlantic climate change and to tropical Pacific surface water processes via long-distance teleconnections. Concentrations of trace elements and productivity proxies were relatively depleted during the Younger Dryas, cool stadial events of MIS 3, and in two episodes of glaciomarine sedimentation from ~14.7 to 30.5 kyr BP (last glacial maximum, LGM), and from 44 to 50.4 kyr BP. Cordilleran Ice Sheet advancement onto the Vancouver Island continental shelf during the LGM led to intervals of increased terrigenous sedimentation and greatly reduced productivity not seen in the southern portion of the CCS, and along with ventilation of North Pacific Intermediate Waters, resulted in brief sedimentary oxic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments have shown that ocean acidification due to rising atmospheric carbon dioxide concentrations has deleterious effects on the performance of many marine organisms. However, few empirical or modelling studies have addressed the long-term consequences of ocean acidification for marine ecosystems. Here we show that as pH declines from 8.1 to 7.8 (the change expected if atmospheric carbon dioxide concentrations increase from 390 to 750 ppm, consistent with some scenarios for the end of this century) some organisms benefit, but many more lose out. We investigated coral reefs, seagrasses and sediments that are acclimatized to low pH at three cool and shallow volcanic carbon dioxide seeps in Papua New Guinea. At reduced pH, we observed reductions in coral diversity, recruitment and abundances of structurally complex framework builders, and shifts in competitive interactions between taxa. However, coral cover remained constant between pH 8.1 and ~7.8, because massive Porites corals established dominance over structural corals, despite low rates of calcification. Reef development ceased below pH 7.7. Our empirical data from this unique field setting confirm model predictions that ocean acidification, together with temperature stress, will probably lead to severely reduced diversity, structural complexity and resilience of Indo-Pacific coral reefs within this century.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paleo-oceanography of the southeastern North Atlantic Ocean during the last 150,000 yr has been studied using biogenous and terrigenous components of hemipelagic sediments sampled close to the northwest African continental margin. Variations of oxygen isotope ratios in shells of benthic calcareous foraminifers in two cores allow the assignment of absolute ages to these cores (in the best case at 1000 yr increments). The uncorrected bulk sedimentation rates of the longest core range from 3.4 to 7.6 cm/ 1000 yr during Interglacial conditions, and from 6.5 to 9.9 cm/1000 yr during Glacial conditions; all other cores have given results of the same order of magnitude, but with generally increasing values towards the continental edge. The distribution of sediment components allow us to make inferences about paleo-oceanographic changes in this region. Frequencies of biogenic components from benthic organisms, oxygen isotope ratios measured in benthic calcareous foraminiferal shells, the total carbonate contents of the sediment and distributions of biogenic components from planktonic organisms often fluctuate in concert. However, all fluctuations which can be attributed to changes of the bottom water masses (North Atlantic Deep Water) seem to precede by several thousand years those which can be linked to changes of the surface water mass distributions or to changes of the climate over the neighboring land masses. Late Quaternary planktonic foraminiferal assemblages in the cores from the northwest African continental margin can be defined satisfactorily in the way that distributions of assemblages found in sediment surface samples from the northeast Atlantic Ocean have been explained. The distributions of assemblages in the northwest African cores can also be used to estimate past sea surface temperatures and salinities. The downcore record of these estimates reveals two warm periods during the last 150,000 yr, the lower one corresponding to the oxygen isotope stage 5 e (equivalent to the Eemian proper in Europe), the upper one to the younger half of the Holocene. Winter surface water temperatures during oxygen isotope stages 6, 4, 3, and 2 are remarkably constant in most cores, while summer sea surface temperatures during stage 3 reach values comparable to those of the warm periods during the Late Holocene and Eemian. Estimated winter sea surface temperatures range from > 16 °C to < 11°C, the summer sea surface temperatures from > 22 °C to < 15 °C during the last 150,000 yr. Estimates of the winter sea surface salinities fluctuate between 36.6? and 35.5?, the higher values being restricted to the warm periods since the penultimate Glacial. Estimates for sea surface temperatures and salinities for two cores from the center of today's coastal upwelling region show less pronounced fluctuations than the record of the open ocean cores in the case of the station 12379 off Cape Barbas, more pronounced in the case of station 12328 off Cape Blanc. Seasonal differences between winter and summer sea surface temperatures derived from the estimated temperatures are today more pronounced in the boundary region of the ocean to the continent than further away from the continent. The differences are generally higher during warm climatic periods of the last 150,000 yr than during cooler ones. The abundance of terrigenous grains in the coarse fractions generally decreases with increasing distance from the continental edge, and also from south to north. The dominant portion of the terrigenous detritus is carried out into the ocean during the relatively cool climatic periods (stage 6, 4, later part of stage 3, stage 2 and oldest part of stage 1). The enhanced precision of dating combined with the stratigraphic resolution of these high deposition rate cores make it clear that the peaks of the terrigenous input off this part of the northwest African continental margin occur simultaneously with times of rapid sea level fluctuations resulting from large volume changes of the large Glacial ice sheets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcification responses of crustose coralline algae (CCA) and branching (Acropora) and massive (Porites) coral species in response to acidification and warming. Using a 30-tank experimental system, we manipulated CO2 levels to simulate doubling and three- to fourfold increases [Intergovernmental Panel on Climate Change (IPCC) projection categories IV and VI] relative to present-day levels under cool and warm scenarios. Results indicated that high CO2 is a bleaching agent for corals and CCA under high irradiance, acting synergistically with warming to lower thermal bleaching thresholds. We propose that CO2 induces bleaching via its impact on photoprotective mechanisms of the photosystems. Overall, acidification impacted more strongly on bleaching and productivity than on calcification. Interestingly, the intermediate, warm CO2 scenario led to a 30% increase in productivity in Acropora, whereas high CO2 lead to zero productivity in both corals. CCA were most sensitive to acidification, with high CO2 leading to negative productivity and high rates of net dissolution. Our findings suggest that sensitive reef-building species such as CCA may be pushed beyond their thresholds for growth and survival within the next few decades whereas corals will show delayed and mixed responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tectonic changes that produced a deep Tasmanian Gateway between Australia and Antarctica are widely invoked as the major mechanism for Antarctic cryosphere growth and Antarctic Circumpolar Current (ACC) development during the Eocene/Oligocene (E/O) transition (34-33 Ma). Ocean Drilling Program (ODP) Leg 189 recovered near-continuous marine sedimentary records across the E/O transition interval at four sites around Tasmania. These records are largely barren of calcareous microfossils but contain a rich record of siliceous- and organic-walled marine microfossils. In this study we integrate micropaleontological, sedimentological, geochemical, and paleomagnetic data from Site 1172 (East Tasman Plateau) to identify four distinct phases (A-D) in the E/O Tasmanian Gateway deepening that are correlative among ODP Leg 189 sites. Phase A, prior to 35.5 Ma: minor initial deepening characterized by a shallow marine prodeltaic setting with initial condensation episodes. Phase B, 35.5-33.5 Ma: increased deepening marked by the onset of major glauconitic deposition and inception of energetic bottom-water currents. Phase C, 33.5-30.2 Ma: further deepening to bathyal depths, with episodic erosion by increasingly energetic bottom-water currents. Phase D, <30.2 Ma: establishment of stable, open-ocean, warm-temperate, oligotrophic settings characterized by siliceous-carbonate ooze deposition. Our combined evidence indicates that this early Oligocene Tasmanian Gateway deepening initially produced an eastward flow of relatively warm surface waters from the Australo-Antarctic Gulf into the southwestern Pacific Ocean. This "proto-Leeuwin" current fundamentally differs from previous regional reconstructions of eastward flowing cool water (e.g., a "proto-ACC") during the early Oligocene and thereby represents an important new constraint for reconstructing regional- to global-scale dynamics for this major global change event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Northeast Pacific benthic foraminiferal d18O and d13 reveal repeated millennial-scale events of strong deep-sea ventilation (associated with nutrient depletion and/or high gas exchange) during stadial (cool, high ice volume) episodes from 10 to 60 ka, opposite the pattern in the deep North Atlantic. Two climate mechanisms may explain this pattern. North Pacific surface waters, chilled by atmospheric transmission from a cold North Atlantic and made saltier by reduced freshwater vapor transports, could have ventilated the deep Pacific from above. Alternatively, faster turnover of Pacific bottom and mid-depth waters, driven by Southern Ocean winds, may have compensated for suppressed North Atlantic Deep Water production during stadial intervals. During the Younger Dryas event (~11.6-13.0 cal ka), ventilation of the deep NE Pacific (~2700 m) lagged that in the Santa Barbara Basin (~450 m) by >500 years, suggesting that the NE Pacific was first ventilated at intermediate depth from above and then at greater depth from below. This apparent lag may reflect the adjustment time of global thermohaline circulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sea surface temperature (SST) of the tropical Indian Ocean is a major component of global climate teleconnections. While the Holocene SST history is documented for regions affected by the Indian and Arabian monsoons, data from the near-equatorial western Indian Ocean are sparse. Reconstructing past zonal and meridional SST gradients requires additional information on past temperatures from the western boundary current region. We present a unique record of Holocene SST and thermocline depth variations in the tropical western Indian Ocean as documented in foraminiferal Mg/Ca ratios and d18O from a sediment core off northern Tanzania. For Mg/Ca and thermocline d18O, most variance is concentrated in the centennial to bicentennial periodicity band. On the millennial time scale, an early to mid-Holocene (~7.8-5.6 ka) warm phase is followed by a temperature drop by up to 2°C, leading to a mid-Holocene cool interval (5.6-4.2 ka). The shift is accompanied by an initial reduction in the difference between surface and thermocline foraminiferal d18O, consistent with the thickening of the mixed layer and suggestions of a strengthened Walker circulation. However, we cannot confirm the expected enhanced zonal SST gradient, as the cooling of similar magnitude had previously been found in SSTs from the upwelling region off Sumatra and in Flores air temperatures. The SST pattern probably reflects the tropical Indian Ocean expression of a large-scale climate anomaly rather than a positive Indian Ocean Dipole-like mean state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sporomorphs and dinoflagellate cysts from site GIK16867 in the northern Angola Basin record the vegetation history of the West African forest during the last 700 ka in relation to changes in salinity and productivity of the eastern Gulf of Guinea. During most cool and cold periods, the Afromontane forest, rather than the open grass-rich dry forest, expanded to lower altitudes partly replacing the lowland rain forest of the borderlands east of the Gulf of Guinea. Except in Stage 3, when oceanic productivity was high during a period of decreased atmospheric circulation, high oceanic productivity is correlated to strong winds. The response of marine productivity in the course of a climatic cycle, however, is earlier than that of wind vigour and makes wind-stress-induced oceanic upwelling in the area less likely. Monsoon variation is well illustrated by the pollen record of increased lowland rain forest that is paired to the dinoflagellate cyst record of decreased salinity forced by increased precipitation and run-off.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable oxygen isotope analyses at annual, 2-, 5-, 10- and 20-varve sample resolutions were carried out on two selected varve intervals from the interglacial sediment record of the Piànico palaeolake. These sediments are particularly suitable for ultra-high-resolution isotope analyses on lacustrine endogenic calcite because of the exceptionally well-preserved varve structure. A bias through detrital contamination can be excluded because microscopically controlled sampling enabled selecting detritus-free samples. The studied sediment intervals comprise 352 and 88 continuous varve series formed during periods of rapid climate change at the onset and end of a marked millennial-scale cool interval during the Piànico Interglacial. The most intriguing result is a pronounced short-term oscillation in the bi-annually resolved isotope record superimposed on the general decreasing and increasing d18O trends at the climatic transitions that is recorded at lower sample resolution. Spectral analyses of the bi-annual time series reveal periodicities indicating solar and NAO controls on the d18O record. Multiple d18O measurements from endogenic calcite of individual varves showed variations of up to 0.6 per mil, thus larger than the observed inter-annual variability and most likely explained by seasonal effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For much of the Mesozoic record there has been an inconclusive debate on the possible global significance of isotopic proxies for environmental change and of sequence stratigraphic depositional sequences. We present a carbon and oxygen isotope and elemental record for part of the Early Jurassic based on marine benthic and nektobenthic molluscs and brachiopods from the shallow marine succession of the Cleveland Basin, UK. The invertebrate isotope record is supplemented with carbon isotope data from fossil wood, which samples atmospheric carbon. New data elucidate two major global carbon isotope events, a negative excursion of ~2 per mil at the Sinemurian-Pliensbachian boundary, and a positive excursion of ~2 per mil in the Late Pliensbachian. The Sinemurian-Pliensbachian boundary event is similar to the slightly younger Toarcian Oceanic Anoxic Event and is characterized by deposition of relatively deepwater organic-rich shale. The Late Pliensbachian strata by contrast are characterized by shallow marine deposition. Oxygen isotope data imply cooling locally for both events. However, because deeper water conditions characterize the Sinemurian-Pliensbachian boundary in the Cleveland Basin the temperature drop is likely of local significance; in contrast a cool Late Pliensbachian shallow seafloor agrees with previous inference of partial icehouse conditions. Both the large-scale, long-term and small-scale, short-duration isotopic cycles occurred in concert with relative sea level changes documented previously from sequence stratigraphy. Isotope events and the sea level cycles are concluded to reflect processes of global significance, supporting the idea of an Early Jurassic in which cyclic swings from icehouse to greenhouse and super greenhouse conditions occurred at timescales from 1 to 10 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multiproxy data set of an AMS radiocarbon dated 46 cm long sediment core from the continental margin off western Svalbard reveals multidecadal climatic variability during the past two millennia. Investigation of planktic and benthic stable isotopes, planktic foraminiferal fauna, and lithogenic parameters aims to unveil the Atlantic Water advection to the eastern Fram Strait by intensity, temperatures, and salinities. Atlantic Water has been continuously present at the site over the last 2,000 years. Superimposed on the increase in sea ice/icebergs, a strengthened intensity of Atlantic Water inflow and seasonal ice-free conditions were detected at ~ 1000 to 1200 AD, during the well-known Medieval Climate Anomaly (MCA). However, temperatures of the MCA never exceeded those of the 20th century. Since ~ 1400 AD significantly higher portions of ice rafted debris and high planktic foraminifer fluxes suggest that the site was located in the region of a seasonal highly fluctuating sea ice margin. A sharp reduction in planktic foraminifer fluxes around 800 AD and after 1730 AD indicates cool summer conditions with major influence of sea ice/icebergs. High amounts of the subpolar planktic foraminifer species Turborotalia quinqueloba in size fraction 150-250 µm indicate strengthened Atlantic Water inflow to the eastern Fram Strait already after ~ 1860 AD. Nevertheless surface conditions stayed cold well into the 20th century indicated by low planktic foraminiferal fluxes. Most likely at the beginning of the 20th century, cold conditions of the terminating Little Ice Age period persisted at the surface whereas warm and saline Atlantic Water already strengthened, hereby subsiding below the cold upper mixed layer. Surface sediments with high abundances of subpolar planktic foraminifers indicate a strong inflow of Atlantic Water providing seasonal ice-free conditions in the eastern Fram Strait during the last few decades.