997 resultados para computational architecture
Resumo:
The arbitrarily structured C-grid, TRiSK (Thuburn, Ringler, Skamarock and Klemp, 2009, 2010) is being used in the ``Model for Prediction Across Scales'' (MPAS) and is being considered by the UK Met Office for their next dynamical core. However the hexagonal C-grid supports a branch of spurious Rossby modes which lead to erroneous grid-scale oscillations of potential vorticity (PV). It is shown how these modes can be harmlessly controlled by using upwind-biased interpolation schemes for PV. A number of existing advection schemes for PV are tested, including that used in MPAS, and none are found to give adequate results for all grids and all cases. Therefore a new scheme is proposed; continuous, linear-upwind stabilised transport (CLUST), a blend between centred and linear-upwind with the blend dependent on the flow direction with respect to the cell edge. A diagnostic of grid-scale oscillations is proposed which gives further discrimination between schemes than using potential enstrophy alone and indeed some schemes are found to destroy potential enstrophy while grid-scale oscillations grow. CLUST performs well on hexagonal-icosahedral grids and unrotated skipped latitude-longitude grids of the sphere for various shallow water test cases. Despite the computational modes, the hexagonal icosahedral grid performs well since these modes are easy and harmless to filter. As a result TRiSK appears to perform better than a spectral shallow water model.
Resumo:
When performing data fusion, one often measures where targets were and then wishes to deduce where targets currently are. There has been recent research on the processing of such out-of-sequence data. This research has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships among the algorithms so that any approximations made are explicit. Results for a multi-sensor scenario involving out-of-sequence data association are used to illustrate the utility of this approach in a specific context.
Resumo:
In data fusion systems, one often encounters measurements of past target locations and then wishes to deduce where the targets are currently located. Recent research on the processing of such out-of-sequence data has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships between the algorithms so that any approximations made are explicit.
Resumo:
The dinuclear complex [{Ru(CN)4}2(μ-bppz)]4− shows a strongly solvent-dependent metal–metal electronic interaction which allows the mixed-valence state to be switched from class 2 to class 3 by changing solvent from water to CH2Cl2. In CH2Cl2 the separation between the successive Ru(II)/Ru(III) redox couples is 350 mVand the IVCT band (from the UV/Vis/NIR spectroelectrochemistry) is characteristic of a borderline class II/III or class III mixed valence state. In water, the redox separation is only 110 mVand the much broader IVCT transition is characteristic of a class II mixed-valence state. This is consistent with the observation that raising and lowering the energy of the d(π) orbitals in CH2Cl2 or water, respectively, will decrease or increase the energy gap to the LUMO of the bppz bridging ligand, which provides the delocalisation pathway via electron-transfer. IR spectroelectrochemistry could only be carried out successfully in CH2Cl2 and revealed class III mixed-valence behaviour on the fast IR timescale. In contrast to this, time-resolved IR spectroscopy showed that the MLCTexcited state, which is formulated as RuIII(bppz˙−)RuII and can therefore be considered as a mixed-valence Ru(II)/Ru(III) complex with an intermediate bridging radical anion ligand, is localised on the IR timescale with spectroscopically distinct Ru(II) and Ru(III) termini. This is because the necessary electron-transfer via the bppz ligand is more difficult because of the additional electron on bppz˙− which raises the orbital through which electron exchange occurs in energy. DFT calculations reproduce the electronic spectra of the complex in all three Ru(II)/Ru(II), Ru(II)/Ru(III) and Ru(III)/Ru(III) calculations in both water and CH2Cl2 well as long as an explicit allowance is made for the presence of water molecules hydrogen-bonded to the cyanides in the model used. They also reproduce the excited-state IR spectra of both [Ru(CN)4(μ-bppz)]2– and [{Ru(CN)4}2(μ-bppz)]4− very well in both solvents. The reorganization of the water solvent shell indicates a possible dynamical reason for the longer life time of the triplet state in water compared to CH2Cl2.
Resumo:
Information architecture (IA) is defined as high level information requirements of an organisation. It is applied in areas such as information systems development, enterprise architecture, business processes management and organisational change management. Still, the lack of methods and theories prevents information architecture becoming a distinct discipline. Healthcare organisation is always seen as information intensive organisation, moreover in a pervasive healthcare environment. Pervasive healthcare aims to provide healthcare services to anyone, anywhere and anytime by incorporating mobile devices and wireless network. Information architecture hence plays an important role in information provisioning within the context of pervasive healthcare in order to support decision making and communication between clinician and patients. Organisational semiotics is one of the social technical approaches that contemplate information through the norms or activities performed within an organisation prior to pervasive healthcare implementation. This paper proposes a conceptual design of information architecture for pervasive healthcare. It is illustrated with a scenario of mental health patient monitoring.
Resumo:
A parallel pipelined array of cells suitable for realtime computation of histograms is proposed. The cell architecture builds on previous work to now allow operating on a stream of data at 1 pixel per clock cycle. This new cell is more suitable for interfacing to camera sensors or to microprocessors of 8-bit data buses which are common in consumer digital cameras. Arrays using the new proposed cells are obtained via C-slow retiming techniques and can be clocked at a 65% faster frequency than previous arrays. This achieves over 80% of the performance of two-pixel per clock cycle parallel pipelined arrays.
Resumo:
A parallel formulation of an algorithm for the histogram computation of n data items using an on-the-fly data decomposition and a novel quantum-like representation (QR) is developed. The QR transformation separates multiple data read operations from multiple bin update operations thereby making it easier to bind data items into their corresponding histogram bins. Under this model the steps required to compute the histogram is n/s + t steps, where s is a speedup factor and t is associated with pipeline latency. Here, we show that an overall speedup factor, s, is available for up to an eightfold acceleration. Our evaluation also shows that each one of these cells requires less area/time complexity compared to similar proposals found in the literature.
Resumo:
In order to improve the quality of healthcare services, the integrated large-scale medical information system is needed to adapt to the changing medical environment. In this paper, we propose a requirement driven architecture of healthcare information system with hierarchical architecture. The system operates through the mapping mechanism between these layers and thus can organize functions dynamically adapting to user’s requirement. Furthermore, we introduce the organizational semiotics methods to capture and analyze user’s requirement through ontology chart and norms. Based on these results, the structure of user’s requirement pattern (URP) is established as the driven factor of our system. Our research makes a contribution to design architecture of healthcare system which can adapt to the changing medical environment.
Resumo:
Clinical pathway is an approach to standardise care processes to support the implementations of clinical guidelines and protocols. It is designed to support the management of treatment processes including clinical and non-clinical activities, resources and also financial aspects. It provides detailed guidance for each stage in the management of a patient with the aim of improving the continuity and coordination of care across different disciplines and sectors. However, in the practical treatment process, the lack of knowledge sharing and information accuracy of paper-based clinical pathways burden health-care staff with a large amount of paper work. This will often result in medical errors, inefficient treatment process and thus poor quality medical services. This paper first presents a theoretical underpinning and a co-design research methodology for integrated pathway management by drawing input from organisational semiotics. An approach to integrated clinical pathway management is then proposed, which aims to embed pathway knowledge into treatment processes and existing hospital information systems. The capability of this approach has been demonstrated through the case study in one of the largest hospitals in China. The outcome reveals that medical quality can be improved significantly by the classified clinical pathway knowledge and seamless integration with hospital information systems.
Resumo:
In recent years, the importance of the corporate brand has significantly grown and companies increasingly seek to strengthen their corporate brand. The corporate brand image can be strengthened through portfolio advertising as a technique of impression management. This mechanism works only if important variables are considered, such as the fit between product brands, the number of product brands as well as the processing depth of the consumers. Based on three experiments, the benefits of portfolio advertising for the corporate brand and its product brands are shown and practical implications are discussed.
Resumo:
The environmental and financial costs of using inorganic phosphate fertilizers to maintain crop yield and quality are high. Breeding crops that acquire and use phosphorus (P) more efficiently could reduce these costs. The variation in shoot P concentration (shoot-P) and various measures of P use efficiency (PUE) were quantified among 355 Brassica oleracea L. accessions, 74 current commercial cultivars, and 90 doubled haploid (DH) mapping lines from a reference genetic mapping population. Accessions were grown at two or more external P concentrations in glasshouse experiments; commercial and DH accessions were also grown in replicated field experiments. Within the substantial species-wide diversity observed for shoot-P and various measures of PUE in B. oleracea, current commercial cultivars have greater PUE than would be expected by chance. This may be a consequence of breeding for increased yield, which is a significant component of most measures of PUE, or early establishment. Root development and architecture correlate with PUE; in particular, lateral root number, length, and growth rate. Significant quantitative trait loci associated with shoot-P and PUE occur on chromosomes C3 and C7. These data provide information to initiate breeding programmes to improve PUE in B. oleracea.