960 resultados para cardiac structure and function
Resumo:
A comprehensive study on physical and chemical properties of Mo/MCM-22 bifunctional catalysts has been made by using combined analytic and spectroscopic techniques, such as adsorption, elemental analysis, and Xe-129 and P-31 NMR of adsorbed trialkylphosphine oxide probe molecules. Samples prepared by the impregnation method with Mo loadings ranging from 2-10 wt.% have been examined and the results are compared with that obtained from samples prepared by mechanical mixing using MoO3 or Mo2C as agents. Sample calcination treatment is essential in achieving a well-dispersed metal species in Mo/MCM-22. It was found that, upon initial incorporation, the Mo species tend to inactivate both Bronsted and Lewis sites locate predominantly in the supercages rather than the 10-membered ring channels of MCM-22. However, as the Mo loading exceeds 6 wt.%, the excessive Mo species tend to migrate toward extracrystalline surfaces of the catalyst. A consistent decrease in concentrations of acid sites with increasing Mo loading < 6 wt.% was found, especially for those with higher acid strengths. Upon loading of Mo > 6 wt.%, further decreases in both Bronsted and Lewis acidities were observed. These results provide crucial supports for interpreting the peculiar behaviors previously observed during the conversion of methane to benzene over Mo/MCM-22 catalyst under non-oxidative conditions, in which an optimal performance was achieved with a Mo loading of 6 wt.%. The effects of Mo incorporation on porosity and acidity features of the catalyst are discussed. (C) 2004 Published by Elsevier B.V.
Resumo:
The dual-phase membrane of La0.15Sr0.85Ga0.3Fe0.7O3-delta-Ba0.5Sr0.5Fe0.2Co0.8O3-delta (LSGF-BSCF) was prepared successfully. This membrane was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA). This membrane has a dense dual-phase structure: LSGF being the dense body of this membrane and BSCF as another phase running along the LSGF body. This structure is favorable for the oxygen permeation through the membrane. The oxygen permeation test shows that the oxygen permeation flux of LSGF-BSCF membrane (Jo(2) = 0.45 ml/min cm(2), at 915 degreesC) is much higher than that of LSGF membrane (Jo(2) = 0.05 ml/min cm(2)). Thickness dependence of oxygen permeation indicates that the oxygen permeation is controlled by the bulk diffusion. Compared to pure BSCF the dual-phase membrane of LSGF-BSCF is stable in reducing atmosphere. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Three nitrophenol isomer-imprinted polymers were prepared under the same conditions using 4-vinylpyridine as a functional monomer. Different recognition capacities for template molecules were observed for the three polymers. Another imprinting system with stronger acidity than nitrophenol isomers, 2-hydroxybenzoic acid (salicylic acid) and 4-hydroxybenzoic acid, was imprinted using 4-vinylpyridine or acrylamide as functional monomer respectively. Both 4-hydroxybenzoic acid-imprinted polymers using the two monomers showed recognition ability for the template molecule. However, when acrylamide was chosen as functional monomer, the salicylic acid-imprinted polymer showed very weak recognition for the template molecule, whereas strong recognition ability of the resultant polymer for salicylic acid was observed with 4-vinylpyridine as functional monomer. It seems that the structure and acidity of template molecules is responsible for the difference in recognition, by influencing the formation and strength of interaction between template molecule and functional monomer during the imprinting process. An understanding of the mechanism of molecular imprinting and molecular recognition of MIPs will help to predict the selectivity of MIPs on the basis of template molecule properties. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Ca-alginate beads were prepared with either external or internal calcium sources. The structures of both beads were investigated with the aid of scanning electron microscopy (SEM) and confocal microscopy. It was shown that the beads with internal calcium source had a looser structure and bigger pore size than those with external calcium source. The attempts to interpret the difference were carried out by determining the Ca content within the beads at various times, which indicated that it was the different gelation mechanisms that caused the difference of structures of both beads. Furthermore, it was also found that the diffusion rate of haemoglobin (Hb) within the beads with an internal calcium source was faster than that of the beads with an external one, which was consistent with the observation of their structures.
Resumo:
The microstructures and mechanical properties of Mg-6Zn-5Al-4Gd-1RE (RE = Ce or Y) alloys were investigated. The addition of Ce or Y obviously refines the grain size for the Mg-6Zn-5Al-4Gd-based alloy, while the Y element has a better refining effect. The Ce and Y show different grain-refining mechanisms: Ce addition mostly promotes the growth of secondary dendrite, while Y addition mainly increases the heterogeneous nucleation sites.
Resumo:
The domain-structure of samples containing a series of starch/poly(sodium acrylate)-grafted superabsorbents, pure starch, pure poly(sodium acrylate), and blend of starch/poly(sodium acrylate) has been studied by high-resolution solid-state C-13 NMR spectroscopy at room temperature. The result shows that the crystallinity of starch decreases greatly in the grafted and blended samples.
Resumo:
The structure and electrochemical characteristics of melted composite Ti0.10Zr0.15V0.35Cr0.10Ni0.30+x% LaNi5 (x=0, 1, 5 and 10) hydrogen storage alloys have been investigated systematically. XRD shows that the matrix phase structure of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure is not changed after adding LaNi5 alloy. However, the amount of the secondary phase increases with increasing LaNi5 content. Field emission scanning electron microscopy-energy dispersive spectroscopy (FESEM-EDS) shows that the C14 Laves phase contains more Zr and the white lard phase has a composition close to (Zr, Ti)(V, Cr, Ni, La)(2).
Resumo:
KCrF3 has been systematically investigated by using the full-potential linearized augmented plane wave plus local orbital method within the generalized gradient approximation and the local spin density approximation plus the on-site Coulomb repulsion approach. The total energies for ferromagnetic and three different antiferromagnetic configurations are calculated in the high-temperature tetragonal and low-temperature monoclinic phases, respectively.
Resumo:
Nearly monodisperse Cu-In-S ternary nanocrystals with tunable composition, crystalline structure, and size were synthesized by a hot-injection method using mixed generic precursors. Such ternary nanocrystals with zincblende and wurtzite structure were reported for the first time.
Resumo:
Ligand-to-metal charge transfer energies of YBO3:Eu have been investigated from the chemical bond viewpoint. The chemical bond parameters, such as the covalency, the polarizability of the chemical bond volume, and the presented charge of the ligands in the chemical bond have been quantitatively determined based on the dielectric theory of complex crystal. We calculated the environmental factor (h(e)), which is the major factor influencing the charge transfer energy in the compounds. The calculated results show that the suitable group space of YBO3 is C2/c. The method provides us with a supplementary tool to judge the proper structure when the structure of the crystal has many uncertain space groups.
Resumo:
Biodegradable poly(e-caprolactone) (PCL) foams with a series of controlled structures were prepared by using chemical foaming method. The cell morphology was detected by scanning electron microscope (SEM). The compressive behavior of the foams was investigated by uniaxial compression test. The effect of density and structural parameters on the foam compressive behavior was analyzed. It was found that the relative compressive modulus has a power law relationship with relative density. Increasing of both the cell wall thickness and the cell density lead to higher compressive modulus of the foam; however, the cell size has no distinct effect on compressive behavior.
Resumo:
The < 110 >-oriented perovskite is very rare in the hybrid perovskites family. In this work, an unusual layered < 110 >-oriented hybrid perovskite, which is stabilized by a special organic ligand, 2-(aminoethyl)isothiourea, has been obtained. This ligand combines a primary amine and a formamidine on the two ends of one molecule. Introduction of the special ligand brings about contorted inorganic sheets in the hybrid perovskite structure. The optical properties of the new < 110 >-oriented perovskite were studied.
Resumo:
In this paper, we have prepared of a topography/chemical composition gradient polystyrene (PS) surface, i.e., an orthogonal gradient surface, to investigate the relationship between surface wettability and surface structure and chemical composition. The prepared surface shows a one-dimensional gradient in wettability in the x, y, and diagonal directions, including hydrophobic to hydrophilic, superhydrophobic to hydrophobic, superhydrophobic to superhydrophilic gradients, and so forth.