960 resultados para antenna radiation patterns
Resumo:
Part I: The dynamic response of an elastic half space to an explosion in a buried spherical cavity is investigated by two methods. The first is implicit, and the final expressions for the displacements at the free surface are given as a series of spherical wave functions whose coefficients are solutions of an infinite set of linear equations. The second method is based on Schwarz's technique to solve boundary value problems, and leads to an iterative solution, starting with the known expression for the point source in a half space as first term. The iterative series is transformed into a system of two integral equations, and into an equivalent set of linear equations. In this way, a dual interpretation of the physical phenomena is achieved. The systems are treated numerically and the Rayleigh wave part of the displacements is given in the frequency domain. Several comparisons with simpler cases are analyzed to show the effect of the cavity radius-depth ratio on the spectra of the displacements.
Part II: A high speed, large capacity, hypocenter location program has been written for an IBM 7094 computer. Important modifications to the standard method of least squares have been incorporated in it. Among them are a new way to obtain the depth of shocks from the normal equations, and the computation of variable travel times for the local shocks in order to account automatically for crustal variations. The multiregional travel times, largely based upon the investigations of the United States Geological Survey, are confronted with actual traverses to test their validity.
It is shown that several crustal phases provide control enough to obtain good solutions in depth for nuclear explosions, though not all the recording stations are in the region where crustal corrections are considered. The use of the European travel times, to locate the French nuclear explosion of May 1962 in the Sahara, proved to be more adequate than previous work.
A simpler program, with manual crustal corrections, is used to process the Kern County series of aftershocks, and a clearer picture of tectonic mechanism of the White Wolf fault is obtained.
Shocks in the California region are processed automatically and statistical frequency-depth and energy depth curves are discussed in relation to the tectonics of the area.
Resumo:
Many applications in cosmology and astrophysics at millimeter wavelengths including CMB polarization, studies of galaxy clusters using the Sunyaev-Zeldovich effect (SZE), and studies of star formation at high redshift and in our local universe and our galaxy, require large-format arrays of millimeter-wave detectors. Feedhorn and phased-array antenna architectures for receiving mm-wave light present numerous advantages for control of systematics, for simultaneous coverage of both polarizations and/or multiple spectral bands, and for preserving the coherent nature of the incoming light. This enables the application of many traditional "RF" structures such as hybrids, switches, and lumped-element or microstrip band-defining filters.
Simultaneously, kinetic inductance detectors (KIDs) using high-resistivity materials like titanium nitride are an attractive sensor option for large-format arrays because they are highly multiplexable and because they can have sensitivities reaching the condition of background-limited detection. A KID is a LC resonator. Its inductance includes the geometric inductance and kinetic inductance of the inductor in the superconducting phase. A photon absorbed by the superconductor breaks a Cooper pair into normal-state electrons and perturbs its kinetic inductance, rendering it a detector of light. The responsivity of KID is given by the fractional frequency shift of the LC resonator per unit optical power.
However, coupling these types of optical reception elements to KIDs is a challenge because of the impedance mismatch between the microstrip transmission line exiting these architectures and the high resistivity of titanium nitride. Mitigating direct absorption of light through free space coupling to the inductor of KID is another challenge. We present a detailed titanium nitride KID design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip in such a way as to form a lossy termination without creating an impedance mismatch. A parallel plate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields acceptable noise. We show that the optimized design can yield expected sensitivities very close to the fundamental limit for a long wavelength imager (LWCam) that covers six spectral bands from 90 to 400 GHz for SZE studies.
Excess phase (frequency) noise has been observed in KID and is very likely caused by two-level systems (TLS) in dielectric materials. The TLS hypothesis is supported by the measured dependence of the noise on resonator internal power and temperature. However, there is still a lack of a unified microscopic theory which can quantitatively model the properties of the TLS noise. In this thesis we derive the noise power spectral density due to the coupling of TLS with phonon bath based on an existing model and compare the theoretical predictions about power and temperature dependences with experimental data. We discuss the limitation of such a model and propose the direction for future study.
Resumo:
The gain of a transmitter for intersatellite communications is closely related to the performance of all the links. We calculate the transmitter telescope's gain with the help of the rigorous scalar diffraction theory and equivalent optical layout method. Furthermore, a comparison is performed with the conventional imaging method. The results show that the stop inside the telescope can affect the gain of the telescope. Finally, the gain is calculated under the condition of the aberrations. We find that different aberrations cause different effects. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.
Resumo:
The gain of a transmitter for intersatellite communications is closely related to the performance of all the links. We calculate the transmitter telescope's gain with the help of the rigorous scalar diffraction theory and equivalent optical layout method. Furthermore, a comparison is performed with the conventional imaging method. The results show that the stop inside the telescope can affect the gain of the telescope. Finally, the gain is calculated under the condition of the aberrations. We find that different aberrations cause different effects. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The efficiency of utilisation of the sun's radiation by natural communities has not been properly demonstrated with what so far has been obtained of reliable values, and it represents a great interest in many respects. A systematic study of the biotic balance of lakes was done in the course of a succession of summers starting in 1932, extensive material was obtained, which permitted to compute a value fear the utilisation of the sun's radiation by plankton in lakes, and to compare this with corresponding values for marine plankton and terrestrial vegetation.
Resumo:
These minutes report on colloquium on the methodology of radiation measurement under water. The meeting was held on 3-5 January 1957, at the Biological Station, Lunz, Austria. The participants of the colloquium discussed various methodologies of radiation measurements, basic methods such as Secchi Disc and underwater photometer as well as specialist equipment like the absolute radiation apparatus.
Resumo:
The cerebellum is a major supraspinal center involved in the coordination of movement. The principal neurons of the cerebellar cortex, Purkinje cells, receive excitatory synaptic input from two sources: the parallel and climbing fibers. These pathways have markedly different effects: the parallel fibers control the rate of simple sodium spikes, while the climbing fibers induce characteristic complex spike bursts, which are accompanied by dendritic calcium transients and play a key role in regulating synaptic plasticity. While many studies using a variety of species, behaviors, and cerebellar regions have documented modulation in Purkinje cell activity during movement, few have attempted to record from these neurons in unrestrained rodents. In this dissertation, we use chronic, multi-tetrode recording in freely-behaving rats to study simple and complex spike firing patterns during locomotion and sleep. Purkinje cells discharge rhythmically during stepping, but this activity is highly variable across steps. We show that behavioral variables systematically influence the step-locked firing rate in a step-phase-dependent way, revealing a functional clustering of Purkinje cells. Furthermore, we find a pronounced disassociation between patterns of variability driven by the parallel and climbing fibers, as well as functional differences between cerebellar lobules. These results suggest that Purkinje cell activity not only represents step phase within each cycle, but is also shaped by behavior across steps, facilitating control of movement under dynamic conditions. During sleep, we observe an attenuation of both simple and complex spiking, relative to awake behavior. Although firing rates during slow wave sleep (SWS) and rapid eye movement sleep (REM) are similar, simple spike activity is highly regular in SWS, while REM is characterized by phasic increases and pauses in simple spiking. This phasic activity in REM is associated with pontine waves, which propagate into the cerebellar cortex and modulate both simple and complex spiking. Such a temporal coincidence between parallel and climbing fiber activity is known to drive plasticity at parallel fiber synapses; consequently, pontocerebellar waves may provide a mechanism for tuning synaptic weights in the cerebellum during active sleep.
Resumo:
Radio and sonic telemetry were used to investigate the tidal orientation, rate of movement (ROM), and surfacing behavior of nine Kemp's ridley turtles, Lepidochelys kempii, tracked east of the Cedar Keys, Florida. The mean of mean turtle bearings on incoming (48 ± 49 0) and falling (232 ± 41 0) tides was significantly oriented to the mean directions of tidal flow (37±9°, P<0.0025, and 234±9 0, P<0.005, respectively). Turtles had a mean ROM of 0.44±0.33 km/h (range: 0.004-1.758 km/h), a mean surface duration of 18± 15 s (range: 1-88 s), and a mean submergence duration of 8.4± 6.4 min (range: 0.2-60.0 min). ROM was negatively correlated with surface and submergence durations and positively correlated with the number of surfacings. Furthermore, ROMs were higher and surface and submergence durations were shorter during the day. Daily activities of turtles were attributed to food acquisition and bioenergetics.
Resumo:
Based on the generalized Huygens-Fresnel diffraction integral theory and the stationary-phase method, we analyze the influence on diffraction-free beam patterns of an elliptical manufacture error in an axicon. The numerical simulation is compared with the beam patterns photographed by using a CCD camera. Theoretical simulation and experimental results indicate that the intensity of the central spot decreases with increasing elliptical manufacture defect and propagation distance. Meanwhile, the bright rings around the central spot are gradually split into four or more symmetrical bright spots. The experimental results fit the theoretical simulation very well. (C) 2008 Society of Photo-Optical Instrumentation Engineers.