947 resultados para Volumetric equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract not available

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new parallel approach for solving a pentadiagonal linear system is presented. The parallel partition method for this system and the TW parallel partition method on a chain of P processors are introduced and discussed. The result of this algorithm is a reduced pentadiagonal linear system of order P \Gamma 2 compared with a system of order 2P \Gamma 2 for the parallel partition method. More importantly the new method involves only half the number of communications startups than the parallel partition method (and other standard parallel methods) and hence is a far more efficient parallel algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Note aims at presenting a simple and efficient procedure to derive the structure of high-order corrector estimates for the homogenization limit applied to a semi-linear elliptic equation posed in perforated domains. Our working technique relies on monotone iterations combined with formal two-scale homogenization asymptotics. It can be adapted to handle more complex scenarios including for instance nonlinearities posed at the boundary of perforations and the vectorial case, when the model equations are coupled only through the nonlinear production terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present document deals with the optimization of shape of aerodynamic profiles -- The objective is to reduce the drag coefficient on a given profile without penalising the lift coefficient -- A set of control points defining the geometry are passed and parameterized as a B-Spline curve -- These points are modified automatically by means of CFD analysis -- A given shape is defined by an user and a valid volumetric CFD domain is constructed from this planar data and a set of user-defined parameters -- The construction process involves the usage of 2D and 3D meshing algorithms that were coupled into own- code -- The volume of air surrounding the airfoil and mesh quality are also parametrically defined -- Some standard NACA profiles were used by obtaining first its control points in order to test the algorithm -- Navier-Stokes equations were solved for turbulent, steady-state ow of compressible uids using the k-epsilon model and SIMPLE algorithm -- In order to obtain data for the optimization process an utility to extract drag and lift data from the CFD simulation was added -- After a simulation is run drag and lift data are passed to the optimization process -- A gradient-based method using the steepest descent was implemented in order to define the magnitude and direction of the displacement of each control point -- The control points and other parameters defined as the design variables are iteratively modified in order to achieve an optimum -- Preliminary results on conceptual examples show a decrease in drag and a change in geometry that obeys to aerodynamic behavior principles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we show how to construct the Evans function for traveling wave solutions of integral neural field equations when the firing rate function is a Heaviside. This allows a discussion of wave stability and bifurcation as a function of system parameters, including the speed and strength of synaptic coupling and the speed of axonal signals. The theory is illustrated with the construction and stability analysis of front solutions to a scalar neural field model and a limiting case is shown to recover recent results of L. Zhang [On stability of traveling wave solutions in synaptically coupled neuronal networks, Differential and Integral Equations, 16, (2003), pp.513-536.]. Traveling fronts and pulses are considered in more general models possessing either a linear or piecewise constant recovery variable. We establish the stability of coexisting traveling fronts beyond a front bifurcation and consider parameter regimes that support two stable traveling fronts of different speed. Such fronts may be connected and depending on their relative speed the resulting region of activity can widen or contract. The conditions for the contracting case to lead to a pulse solution are established. The stability of pulses is obtained for a variety of examples, in each case confirming a previously conjectured stability result. Finally we show how this theory may be used to describe the dynamic instability of a standing pulse that arises in a model with slow recovery. Numerical simulations show that such an instability can lead to the shedding of a pair of traveling pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop the a posteriori error estimation of interior penalty discontinuous Galerkin discretizations for H(curl)-elliptic problems that arise in eddy current models. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The proposed a posteriori error estimator is validated by numerical experiments, illustrating its reliability and efficiency for a range of test problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier-Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint second-order elliptic partial differential equations. In order to solve the resulting system of nonlinear equations, we exploit a (damped) Newton-GMRES algorithm. Numerical experiments demonstrating the practical performance of the proposed discontinuous Galerkin method with higher-order polynomials are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we consider the application of the generalization of the symmetric version of the interior penalty discontinuous Galerkin finite element method to the numerical approximation of the compressible Navier--Stokes equations. In particular, we consider the a posteriori error analysis and adaptive mesh design for the underlying discretization method. Indeed, by employing a duality argument (weighted) Type I a posteriori bounds are derived for the estimation of the error measured in terms of general target functionals of the solution; these error estimates involve the product of the finite element residuals with local weighting terms involving the solution of a certain dual problem that must be numerically approximated. This general approach leads to the design of economical finite element meshes specifically tailored to the computation of the target functional of interest, as well as providing efficient error estimation. Numerical experiments demonstrating the performance of the proposed approach will be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a new numerical method to solve fractional differential equations. Given a fractional derivative of arbitrary real order, we present an approximation formula for the fractional operator that involves integer-order derivatives only. With this, we can rewrite FDEs in terms of a classical one and then apply any known technique. With some examples, we show the accuracy of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modelling of diffusive terms in particle methods is a delicate matter and several models were proposed in the literature to take such terms into account. The diffusion velocity method (DVM), originally designed for the diffusion of passive scalars, turns diffusive terms into convective ones by expressing them as a divergence involving a so-called diffusion velocity. In this paper, DVM is extended to the diffusion of vectorial quantities in the three-dimensional Navier–Stokes equations, in their incompressible, velocity–vorticity formulation. The integration of a large eddy simulation (LES) turbulence model is investigated and a DVM general formulation is proposed. Either with or without LES, a novel expression of the diffusion velocity is derived, which makes it easier to approximate and which highlights the analogy with the original formulation for scalar transport. From this statement, DVM is then analysed in one dimension, both analytically and numerically on test cases to point out its good behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Renal dysfunction is a powerful predictor of adverse outcomes in patients hospitalized for acute coronary syndrome. Three new glomerular filtration rate (GFR) estimating equations recently emerged, based on serum creatinine (CKD-EPIcreat), serum cystatin C (CKD-EPIcyst) or a combination of both (CKD-EPIcreat/cyst), and they are currently recommended to confirm the presence of renal dysfunction. Our aim was to analyse the predictive value of these new estimated GFR (eGFR) equations regarding mid-term mortality in patients with acute coronary syndrome, and compare them with the traditional Modification of Diet in Renal Disease (MDRD-4) formula. METHODS AND RESULTS: 801 patients admitted for acute coronary syndrome (age 67.3±13.3 years, 68.5% male) and followed for 23.6±9.8 months were included. For each equation, patient risk stratification was performed based on eGFR values: high-risk group (eGFR<60ml/min per 1.73m2) and low-risk group (eGFR⩾60ml/min per 1.73m2). The predictive performances of these equations were compared using area under each receiver operating characteristic curves (AUCs). Overall risk stratification improvement was assessed by the net reclassification improvement index. The incidence of the primary endpoint was 18.1%. The CKD-EPIcyst equation had the highest overall discriminate performance regarding mid-term mortality (AUC 0.782±0.20) and outperformed all other equations (ρ<0.001 in all comparisons). When compared with the MDRD-4 formula, the CKD-EPIcyst equation accurately reclassified a significant percentage of patients into more appropriate risk categories (net reclassification improvement index of 11.9% (p=0.003)). The CKD-EPIcyst equation added prognostic power to the Global Registry of Acute Coronary Events (GRACE) score in the prediction of mid-term mortality. CONCLUSION: The CKD-EPIcyst equation provides a novel and improved method for assessing the mid-term mortality risk in patients admitted for acute coronary syndrome, outperforming the most widely used formula (MDRD-4), and improving the predictive value of the GRACE score. These results reinforce the added value of cystatin C as a risk marker in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider a class of scalar integral equations with a form of space-dependent delay. These non-local models arise naturally when modelling neural tissue with active axons and passive dendrites. Such systems are known to support a dynamic (oscillatory) Turing instability of the homogeneous steady state. In this paper we develop a weakly nonlinear analysis of the travelling and standing waves that form beyond the point of instability. The appropriate amplitude equations are found to be the coupled mean-field Ginzburg-Landau equations describing a Turing-Hopf bifurcation with modulation group velocity of O(1). Importantly we are able to obtain the coefficients of terms in the amplitude equations in terms of integral transforms of the spatio-temporal kernels defining the neural field equation of interest. Indeed our results cover not only models with axonal or dendritic delays but those which are described by a more general distribution of delayed spatio-temporal interactions. We illustrate the predictive power of this form of analysis with comparison against direct numerical simulations, paying particular attention to the competition between standing and travelling waves and the onset of Benjamin-Feir instabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural field models of firing rate activity typically take the form of integral equations with space-dependent axonal delays. Under natural assumptions on the synaptic connectivity we show how one can derive an equivalent partial differential equation (PDE) model that properly treats the axonal delay terms of the integral formulation. Our analysis avoids the so-called long-wavelength approximation that has previously been used to formulate PDE models for neural activity in two spatial dimensions. Direct numerical simulations of this PDE model show instabilities of the homogeneous steady state that are in full agreement with a Turing instability analysis of the original integral model. We discuss the benefits of such a local model and its usefulness in modeling electrocortical activity. In particular we are able to treat "patchy'" connections, whereby a homogeneous and isotropic system is modulated in a spatially periodic fashion. In this case the emergence of a "lattice-directed" traveling wave predicted by a linear instability analysis is confirmed by the numerical simulation of an appropriate set of coupled PDEs. Article published and (c) American Physical Society 2007

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis proves certain results concerning an important question in non-equilibrium quantum statistical mechanics which is the derivation of effective evolution equations approximating the dynamics of a system of large number of bosons initially at equilibrium (ground state at very low temperatures). The dynamics of such systems are governed by the time-dependent linear many-body Schroedinger equation from which it is typically difficult to extract useful information due to the number of particles being large. We will study quantitatively (i.e. with explicit bounds on the error) how a suitable one particle non-linear Schroedinger equation arises in the mean field limit as number of particles N → ∞ and how the appropriate corrections to the mean field will provide better approximations of the exact dynamics. In the first part of this thesis we consider the evolution of N bosons, where N is large, with two-body interactions of the form N³ᵝv(Nᵝ⋅), 0≤β≤1. The parameter β measures the strength and the range of interactions. We compare the exact evolution with an approximation which considers the evolution of a mean field coupled with an appropriate description of pair excitations, see [18,19] by Grillakis-Machedon-Margetis. We extend the results for 0 ≤ β < 1/3 in [19, 20] to the case of β < 1/2 and obtain an error bound of the form p(t)/Nᵅ, where α>0 and p(t) is a polynomial, which implies a specific rate of convergence as N → ∞. In the second part, utilizing estimates of the type discussed in the first part, we compare the exact evolution with the mean field approximation in the sense of marginals. We prove that the exact evolution is close to the approximate in trace norm for times of the order o(1)√N compared to log(o(1)N) as obtained in Chen-Lee-Schlein [6] for the Hartree evolution. Estimates of similar type are obtained for stronger interactions as well.