980 resultados para VanA phenotype
Resumo:
β-Arrestin2 (ARRB2) is a component of the G-protein-coupled receptor complex and is involved in μ-opioid and dopamine D(2) receptor signaling, two central processes in methadone signal transduction. We analyzed 238 patients in methadone maintenance treatment (MMT) and identified a haplotype block (rs34230287, rs3786047, rs1045280 and rs2036657) spanning almost the entire ARRB2 locus. Although none of these single nucleotide polymorphisms (SNPs) leads to a change in amino-acid sequence, we found that for all the SNPs analyzed, with exception of rs34230287, homozygosity for the variant allele confers a nonresponding phenotype (n=73; rs1045280C and rs2036657G: OR=3.1, 95% CI=1.5-6.3, P=0.004; rs3786047A: OR=2.5, 95% CI=1.2-5.1, P=0.02) also illustrated by a 12-fold shorter period of negative urine screening (P=0.01). The ARRB2 genotype may thus contribute to the interindividual variability in the response to MMT and help to predict response to treatment.
Resumo:
RESUME Nous n'avons pas de connaissance précise des facteurs à l'origine de l'hétérogénéité phénotypique des cellules T CD4 mémoires. Une troisième population phénotypique des cellules T CD4 mémoires, caractérisée par les marqueurs CD45RA+CCR7- a été identifiée dans cette étude. Cette population présente un état de différentiation avancée, comme en témoigne son histoire de réplication, ainsi que sa capacité de prolifération homéostatique. Les réponses des cellules T CD4 mémoires à différentes conditions de persistance et charge antigénique ont trois patterns phénotypiques différents, caractérisés par les marqueurs CD45RA et CCR7. La réponse CD4 mono -phénotypique CD45RA-CCR7+ ou CD45RA- CCR7- est associée à des conditions d'élimination de l'antigène (telle la réponse CD4 tétanos spécifique) ou à des conditions de persistance antigénique et de virémie élevée (telle la réponse HIV chronique ou la primo-infection CMV) respectivement. D'autre part, les réponses T CD4 multi -phénotypiques CD45RA-CCR7+ sont associées à des conditions d'exposition antigénique prolongée et de faible virémie (telles les infections CMV, EBV et HSV ou les infections HIV chez les long term non progressons). La réponse mono -phénotypique CD45RA- CCR7+ est propre aux cellules T CD4 secrétant de IL2, définies également comme centrales mémoires, la réponse CD45RA- CCR7- aux cellules T CD4 secrétant de l'IFNγ et finalement la réponse mufti-phénotypique aux cellules T CD4 secrétant à la fois de l'IL2 et de l' IFNγ. En conclusion, ces résultats témoignent d'une régulation de l'hétérogénéité phénotypique par l'exposition et la charge antigénique. ABSTRACT The factors responsible for the phenotypic heterogeneity of memory CD4 T cells are unclear. In the present study, we have identified a third population of memory CD4 T cells characterized as CD45RA+CCRT that, based on its replication history and the homeostatic proliferative capacity, was at an advanced stage of differentiation. Three different phenotypic patterns of memory CD4 T cell responses were delineated under different conditions of antigen (Ag) persistence and load using CD45RA and CCR7 as markers of memory T cells. Mono-phenotypic CD45RA'CCR7+ or CD45RA'CCR7' CD4 T cell responses were associated with conditions of Ag clearance (tetanus toxoid-specific CD4 T cell response) or Ag persistence and high load (chronic HIV-1 and primary CMV infections), respectively. Multi-phenotypic CD45RA CCR7+, CD45RA'CCRT and CD45RA+CCRT CD4 T cell responses were associated with protracted Ag exposure and low load (chronic CMV, EBV and HSV infections and HIV-1 infection in long-term nonprogressors). The mono-phenotypic CD45RA'CCR7+ response was typical of central memory (TCM) IL-2-secreting CD4 T cells, the mono-phenotypic CD45RA CCRT response of effector memory (TEM) IFN-γ -secreting CD4 T cells and the multi-phenotypic response of both IL-2- and IFN-γ -secreting cells. The present results indicate that the heterogeneity of different Ag-specific CD4 T cell responses is regulated by Ag exposure and Ag load.
Resumo:
NR2E3, also called photoreceptor-specific nuclear receptor (PNR), is a transcription factor of the nuclear hormone receptor superfamily whose expression is uniquely restricted to photoreceptors. There, its physiological activity is essential for proper rod and cone photoreceptor development and maintenance. Thirty-two different mutations in NR2E3 have been identified in either homozygous or compound heterozygous state in the recessively inherited enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), and clumped pigmentary retinal degeneration (CPRD). The clinical phenotype common to all these patients is night blindness, rudimental or absent rod function, and hyperfunction of the "blue" S-cones. A single p.G56R mutation is inherited in a dominant manner and causes retinitis pigmentosa (RP). We have established a new locus-specific database for NR2E3 (www.LOVD.nl/eye), containing all reported mutations, polymorphisms, and unclassified sequence variants, including novel ones. A high proportion of mutations are located in the evolutionarily-conserved DNA-binding domains (DBDs) and ligand-binding domains (LBDs) of NR2E3. Based on homology modeling of these NR2E3 domains, we propose a structural localization of mutated residues. The high variability of clinical phenotypes observed in patients affected by NR2E3-linked retinal degenerations may be caused by different disease mechanisms, including absence of DNA-binding, altered interactions with transcriptional coregulators, and differential activity of modifier genes.
Resumo:
We showed that a large fraction of lepromatous patients do harbor helper-type circulating T-cells that can be activated in vitro by Mycobacterium leprae. M. leprae and PPD triggered T-cell lines could be then obtained from both tuberculoid and lepromatous patients. The proliferative response of these helper T-cells is predominantly directed against epitopes shared by several species of mycobacteria, in lepromatous patients as well as in tuberculoid patients, but species specific T-cells are also present. When presented in the context of M. leprae, these cross reactive epitopes usually fail to stimulate the T-cell lines of lepromatous patients, because of the contamination of the lines by supressor T-cells actavable by M. leprae. In one lepromatous patient, PPD and M. leprae reactive T-cell lines and clones (of the CD4 phenotype), exhibited a strong cytotoxic activity to autologous target cells coated with antigen: the relevance of this phenomenon to the pathophysiology of lepromatous leprosy remains however unknown.
Resumo:
Colour polymorphism in vertebrates is usually under genetic control and may be associated with variation in physiological traits. The melanocortin 1 receptor (Mc1r) has been involved repeatedly in melanin-based pigmentation but it was thought to have few other physiological effects. However, recent pharmacological studies suggest that MC1R could regulate the aspects of immunity. We investigated whether variation at Mc1r underpins plumage colouration in the Eleonora's falcon. We also examined whether nestlings of the different morphs differed in their inflammatory response induced by phytohemagglutinin (PHA). Variation in colouration was due to a deletion of four amino acids at the Mc1r gene. Cellular immune response was morph specific. In males, but not in females, dark nestling mounted a lower PHA response than pale ones. Although correlative, our results raise the neglected possibility that MC1R has pleiotropic effects, suggesting a potential role of immune capacity and pathogen pressure on the maintenance of colour polymorphism in this species.
Resumo:
A large fraction of genome variation between individuals is comprised of submicroscopic copy number variation of genomic DNA segments. We assessed the relative contribution of structural changes and gene dosage alterations on phenotypic outcomes with mouse models of Smith-Magenis and Potocki-Lupski syndromes. We phenotyped mice with 1n (Deletion/+), 2n (+/+), 3n (Duplication/+), and balanced 2n compound heterozygous (Deletion/Duplication) copies of the same region. Parallel to the observations made in humans, such variation in gene copy number was sufficient to generate phenotypic consequences: in a number of cases diametrically opposing phenotypes were associated with gain versus loss of gene content. Surprisingly, some neurobehavioral traits were not rescued by restoration of the normal gene copy number. Transcriptome profiling showed that a highly significant propensity of transcriptional changes map to the engineered interval in the five assessed tissues. A statistically significant overrepresentation of the genes mapping to the entire length of the engineered chromosome was also found in the top-ranked differentially expressed genes in the mice containing rearranged chromosomes, regardless of the nature of the rearrangement, an observation robust across different cell lineages of the central nervous system. Our data indicate that a structural change at a given position of the human genome may affect not only locus and adjacent gene expression but also "genome regulation." Furthermore, structural change can cause the same perturbation in particular pathways regardless of gene dosage. Thus, the presence of a genomic structural change, as well as gene dosage imbalance, contributes to the ultimate phenotype.
Resumo:
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder-the cerebellum-and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame-6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.
Resumo:
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
Resumo:
Asbestos exposure can result in serious and frequently lethal diseases, including malignant mesothelioma. The host sensor for asbestos-induced inflammation is the NLRP3 inflammasome and it is widely assumed that this complex is essential for asbestos-induced cancers. Here, we report that acute interleukin-1β production and recruitment of immune cells into peritoneal cavity were significantly decreased in the NLRP3-deficient mice after the administration of asbestos. However, NLRP3-deficient mice displayed a similar incidence of malignant mesothelioma and survival times as wild-type mice. Thus, early inflammatory reactions triggered by asbestos are NLRP3-dependent, but NLRP3 is not critical in the chronic development of asbestos-induced mesothelioma. Notably, in a two-stage carcinogenesis-induced papilloma model, NLRP3-deficient mice showed a resistance phenotype in two different strain backgrounds, suggesting a tumour-promoting role of NLRP3 in certain chemically-induced cancer types.
Resumo:
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins secreted in response to oral glucose ingestion by intestinal L and K cells, respectively. The molecular mechanisms responsible for intestinal cell glucose sensing are unknown but could be related to those described for beta-cells, brain and hepatoportal sensors. We determined the role of GLUT2, GLP-1 or GIP receptors in glucose-induced incretins secretion, in the corresponding knockout mice. GLP-1 secretion was reduced in all mutant mice, while GIP secretion did not require GLUT2. Intestinal GLP-1 content was reduced only in GIP and GLUT2 receptors knockout mice suggesting that this impairment could contribute to the phenotype. Intestinal GIP content was similar in all mice studied. Furthermore, the impaired incretins secretion was associated with a reduced glucose-stimulated insulin secretion and an impaired glucose tolerance in all mice. In conclusion, both incretins secretion depends on mechanisms involving their own receptors and GLP-1 further requires GLUT2.
Resumo:
In Saccharomyces cerevisiae, TBF1, an essential gene, influences telomere function but also has other roles in the global regulation of transcription. We have identified a new member of the tbf1 gene family in the mammalian pathogen Pneumocystis carinii. We demonstrate by transspecies complementation that its ectopic expression can provide the essential functions of Schizosaccharomyces pombe tbf1 but that there is no rescue between fission and budding yeast orthologues. Our findings indicate that an essential function of this family of proteins has diverged in the budding and fission yeasts and suggest that effects on telomere length or structure are not the primary cause of inviability in S. pombe tbf1 null strains.
Resumo:
Clinical and experimental evidence suggests that synovial thrombin formation in arthritic joints is prominent and deleterious, leading to exacerbation of rheumatoid arthritis (RA). In this context, cellular effects of thrombin mediated by the protease-activated receptors (PARs) in arthritic joints may be of paramount significance. Four PARs have now been identified. PAR1, PAR3, and PAR4 can all be activated by thrombin whereas PAR2 is activated by trypsin and few other proteases.We first explored PARs expression in RA synovial tissues. Synovial membranes from 11 RA patients were analyzed for PARs expression by RT-PCR and by immunohistology. PAR4 was found in all the biopsies, whereas the expression of PAR1, PAR 2 and PAR3 was more restricted (8/11, 5/11 and 3/11 respectively). In the arthritic synovial membrane of murine antigen-induced arthritis (AIA) we found coexpression of the four different PARs. Next, we explored the functional importance of PAR1 during AIA in vivo using PAR-1 deficient mice. The phenotype of PAR1-deficient mice (n = 22), based on the analysis of arthritis severity (as measured by 99 m tecnetium uptake, histological scoring and intra-articular fibrin measurements) was similar to that of wild-type mice (n = 24). In addition, the in vivo production of antibodies against mBSA was also similar. By contrast, the mBSA-induced in vitro lymph node cell proliferation was significantly decreased in PAR1-deficient mice as compared with controls. Accordingly, mBSA-induced production of interferon-γ by lymph node cells in culture was significantly decreased in PAR1-deficient mice as compared with controls, whereas opposite results were observed for production of IL-10.
Resumo:
Neuroblastoma (NB) is a neural crest-derived childhood tumor characterized by a remarkable phenotypic diversity, ranging from spontaneous regression to fatal metastatic disease. Although the cancer stem cell (CSC) model provides a trail to characterize the cells responsible for tumor onset, the NB tumor-initiating cell (TIC) has not been identified. In this study, the relevance of the CSC model in NB was investigated by taking advantage of typical functional stem cell characteristics. A predictive association was established between self-renewal, as assessed by serial sphere formation, and clinical aggressiveness in primary tumors. Moreover, cell subsets gradually selected during serial sphere culture harbored increased in vivo tumorigenicity, only highlighted in an orthotopic microenvironment. A microarray time course analysis of serial spheres passages from metastatic cells allowed us to specifically "profile" the NB stem cell-like phenotype and to identify CD133, ABC transporter, and WNT and NOTCH genes as spheres markers. On the basis of combined sphere markers expression, at least two distinct tumorigenic cell subpopulations were identified, also shown to preexist in primary NB. However, sphere markers-mediated cell sorting of parental tumor failed to recapitulate the TIC phenotype in the orthotopic model, highlighting the complexity of the CSC model. Our data support the NB stem-like cells as a dynamic and heterogeneous cell population strongly dependent on microenvironmental signals and add novel candidate genes as potential therapeutic targets in the control of high-risk NB.
Resumo:
Complete achromatopsia is a rare autosomal recessive disease associated with CNGA3, CNGB3, GNAT2 and PDE6C mutations. This retinal disorder is characterized by complete loss of color discrimination due to the absence or alteration of the cones function. The purpose of the present study was the clinical and the genetic characterization of achromatopsia in a large consanguineous Tunisian family. Ophthalmic evaluation included a full clinical examination, color vision testing and electroretinography. Linkage analysis using microsatellite markers flanking CNGA3, CNGB3, GNAT2 and PDE6C genes was performed. Mutations were screened by direct sequencing. A total of 12 individuals were diagnosed with congenital complete achromatopsia. They are members of six nuclear consanguineous families belonging to the same large consanguineous family. Linkage analysis revealed linkage to GNAT2. Mutational screening of GNAT2 revealed three intronic variations c.119-69G>C, c.161+66A>T and c.875-31G>C that co-segregated with a novel mutation p.R313X. An identical GNAT2 haplotype segregating with this mutation was identified, indicating a founder mutation. All patients were homozygous for the p.R313X mutation. This is the first report of the clinical and genetic investigation of complete achromatopsia in North Africa and the largest family with recessive achromatopsia involving GNAT2; thus, providing a unique opportunity for genotype-phenotype correlation for this extremely rare condition.
Resumo:
Purpose: The purpose of this study was to compare the plaque morphology between coronary and peripheral arteries using intravascular ultrasound (IVUS). Methods: IVUS was performed in 68 patients with coronary and 93 with peripheral artery lesions (29 carotid, 50 renal, and 14 iliac). Plaques were classified as fibroatheroma (VH-FA) (further subclassified as thin-capped [VH-TCFA] and thick-capped [VH-ThCFA]), fibrocalcific plaque (VH-FC) and pathological intimal thickening (VH-PIT). Results: Plaque rupture (13% of coronary, 7% of carotid, 6% of renal, and 7% of iliac arteries; P=NS) and VH-TCFA (37% of coronary, 24% of carotid, 16% of renal, and 7% of iliac arteries; P=0.02) was observed in all arteries. Compared to coronary arteries, VH-FA was less frequently observed in renal (P<0.001) and iliac arteries (P<0.006), while VH-PIT and VH-FC were prevalent in both of these peripheral arteries. Lesions with positive remodeling demonstrated more characteristics of VH-FA in coronary, carotid, and renal arteries compared to those with intermediate/negative remodeling (all P<0.01). There was positive relationship between RI and percent necrotic core area in all four arteries. Conclusions: Atherosclerotic plaque phenotypes were heterogeneous among four different arteries. In contrast, the associations of remodeling mode with plaque phenotype and composition were similar among the various arterial beds.