996 resultados para Unit vector fields
Resumo:
The issue of de Sitter invariance for a massless minimally coupled scalar field is examined. Formally, it is possible to construct a de Sitterinvariant state for this case provided that the zero mode of the field is quantized properly. Here we take the point of view that this state is physically acceptable, in the sense that physical observables can be computed and have a reasonable interpretation. In particular, we use this vacuum to derive a new result: that the squared difference between the field at two points along a geodesic observers spacetime path grows linearly with the observers proper time for a quantum state that does not break de Sitter invariance. Also, we use the Hadamard formalism to compute the renormalized expectation value of the energy-momentum tensor, both in the O(4)-invariant states introduced by Allen and Follaci, and in the de Sitterinvariant vacuum. We find that the vacuum energy density in the O(4)-invariant case is larger than in the de Sitterinvariant case.
Resumo:
BACKGROUND: The emergency department has been identified as an area within the health care sector with the highest reports of violence. The best way to control violence is to prevent it before it becomes an issue. Ideally, to prevent violent episodes we should eliminate all triggers of frustration and violence. Our study aims to assess the impact of a quality improvement multi-faceted program aiming at preventing incivility and violence against healthcare professionals working at the ophthalmological emergency department of a teaching hospital. METHODS/DESIGN: This study is a single-center prospective, controlled time-series study with an alternate-month design. The prevention program is based on the successive implementation of five complementary interventions: a) an organizational approach with a standardized triage algorithm and patient waiting number screen, b) an environmental approach with clear signage of the premises, c) an educational approach with informational videos for patients and accompanying persons in waiting rooms, d) a human approach with a mediator in waiting rooms and e) a security approach with surveillance cameras linked to the hospital security. The primary outcome is the rate of incivility or violence by patients, or those accompanying them against healthcare staff. All patients admitted to the ophthalmological emergency department, and those accompanying them, will be enrolled. In all, 45,260 patients will be included in over a 24-month period. The unit analysis will be the patient admitted to the emergency department. Data analysis will be blinded to allocation, but due to the nature of the intervention, physicians and patients will not be blinded. DISCUSSION: The strengths of this study include the active solicitation of event reporting, that this is a prospective study and that the study enables assessment of each of the interventions that make up the program. The challenge lies in identifying effective interventions, adapting them to the context of care in an emergency department, and thoroughly assessing their efficacy with a high level of proof.The study has been registered as a cRCT at clinicaltrials.gov (identifier: NCT02015884).
Resumo:
In mammals, the presence of excitable cells in muscles, heart and nervous system is crucial and allows fast conduction of numerous biological information over long distances through the generation of action potentials (AP). Voltage-gated sodium channels (Navs) are key players in the generation and propagation of AP as they are responsible for the rising phase of the AP. Navs are heteromeric proteins composed of a large pore-forming a-subunit (Nav) and smaller ß-auxiliary subunits. There are ten genes encoding for Navl.l to Nav1.9 and NaX channels, each possessing its own specific biophysical properties. The excitable cells express differential combinations of Navs isoforms, generating a distinct electrophysiological signature. Noteworthy, only when anchored at the membrane are Navs functional and are participating in sodium conductance. In addition to the intrinsic properties of Navs, numerous regulatory proteins influence the sodium current. Some proteins will enhance stabilization of membrane Navs while others will favour internalization. Maintaining equilibrium between the two is of crucial importance for controlling cellular excitability. The E3 ubiquitin ligase Nedd4-2 is a well-characterized enzyme that negatively regulates the turnover of many membrane proteins including Navs. On the other hand, ß-subunits are known since long to stabilize Navs membrane anchoring. Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of Navs expressed in dorsal root ganglion (DRG) sensory neurons as highlighted in different animal models of neuropathic pain. Among Navs, Nav1.7 and Nav1.8 are abundantly and specifically expressed in DRG sensory neurons and have been recurrently incriminated in nociception and neuropathic pain development. Using the spared nerve injury (SNI) experimental model of neuropathic pain in mice, I observed a specific reduction of Nedd4-2 in DRG sensory neurons. This decrease subsequently led to an upregulation of Nav1.7 and Nav1.8 protein and current, in the axon and the DRG neurons, respectively, and was sufficient to generate neuropathic pain-associated hyperexcitability. Knocking out Nedd4-2 specifically in nociceptive neurons led to the same increase of Nav1.7 and Nav1.8 concomitantly with an increased thermal sensitivity in mice. Conversely, rescuing Nedd4-2 downregulation using viral vector transfer attenuated neuropathic pain mechanical hypersensitivity. This study demonstrates the significant role of Nedd4-2 in regulating cellular excitability in vivo and its involvement in neuropathic pain development. The role of ß-subunits in neuropathic pain was already demonstrated in our research group. Because of their stabilization role, the increase of ßl, ß2 and ß3 subunits in DRGs after SNI led to increased Navs anchored at the membrane. Here, I report a novel mechanism of regulation of a-subunits by ß- subunits in vitro; ßl and ß3-subunits modulate the glycosylation pattern of Nav1.7, which might account for stabilization of its membrane expression. This opens new perspectives for investigation Navs state of glycosylation in ß-subunits dependent diseases, such as in neuropathic pain. - Chez les mammifères, la présence de cellules excitables dans les muscles, le coeur et le système nerveux est cruciale; elle permet la conduction rapide de nombreuses informations sur de longues distances grâce à la génération de potentiels d'action (PA). Les canaux sodiques voltage-dépendants (Navs) sont des participants importants dans la génération et la propagation des PA car ils sont responsables de la phase initiale de dépolarisation du PA. Les Navs sont des protéines hétéromériques composées d'une grande sous-unité a (formant le pore du canal) et de petites sous-unités ß accompagnatrices. Il existe dix gènes qui codent pour les canaux sodiques, du Nav 1.1 au Nav 1.9 ainsi que NaX, chacun possédant des propriétés biophysiques spécifiques. Les cellules excitables expriment différentes combinaisons des différents isoformes de Navs, qui engendrent une signature électrophysiologique distincte. Les Navs ne sont fonctionnels et ne participent à la conductibilité du Na+, que s'ils sont ancrés à la membrane plasmique. En plus des propriétés intrinsèques des Navs, de nombreuses protéines régulatrices influencent également le courant sodique. Certaines protéines vont favoriser l'ancrage et la stabilisation des Navs exprimés à la membrane, alors que d'autres vont plutôt favoriser leur internalisation. Maintenir l'équilibre des deux processus est crucial pour contrôler l'excitabilité cellulaire. Dans ce contexte, Nedd4-2, de la famille des E3 ubiquitin ligase, est une enzyme bien caractérisée qui régule l'internalisation de nombreuses protéines, notamment celle des Navs. Inversement, les sous-unités ß sont connues depuis longtemps pour stabiliser l'ancrage des Navs à la membrane. La douleur neuropathique périphérique est une condition débilitante résultant d'une atteinte à un nerf. Elle est caractérisée par la dérégulation des Navs exprimés dans les neurones sensoriels du ganglion spinal (DRG). Ceci a été démontré à de multiples occasions dans divers modèles animaux de douleur neuropathique. Parmi les Navs, Nav1.7 et Nav1.8 sont abondamment et spécifiquement exprimés dans les neurones sensoriels des DRG et ont été impliqués de façon récurrente dans le développement de la douleur neuropathique. En utilisant le modèle animal de douleur neuropathique d'épargne du nerf sural (spared nerve injury, SNI) chez la souris, j'ai observé une réduction spécifique des Nedd4-2 dans les neurones sensoriels du DRG. Cette diminution avait pour conséquence l'augmentation de l'expression des protéines et des courants de Nav 1.7 et Nav 1.8, respectivement dans l'axone et les neurones du DRG, et était donc suffisante pour créer l'hyperexcitabilité associée à la douleur neuropathique. L'invalidation pour le gène codant pour Nedd4-2 dans une lignée de souris génétiquement modifiées a conduit à de similaires augmentations de Nav1.7 et Nav1.8, parallèlement à une augmentation à la sensibilité thermique. A l'opposé, rétablir une expression normale de Nedd4-2 en utilisant un vecteur viral a eu pour effet de contrecarrer le développement de l'hypersensibilité mécanique lié à ce modèle de douleur neuropathique. Cette étude démontre le rôle important de Nedd4-2 dans la régulation de l'excitabilité cellulaire in vivo et son implication dans le développement des douleurs neuropathiques. Le rôle des sous-unités ß dans les douleurs neuropathiques a déjà été démontré dans notre groupe de recherche. A cause de leur rôle stabilisateur, l'augmentation des sous-unités ßl, ß2 et ß3 dans les DRG après SNI, conduit à une augmentation des Navs ancrés à la membrane. Dans mon travail de thèse, j'ai observé un nouveau mécanisme de régulation des sous-unités a par les sous-unités ß in vitro. Les sous-unités ßl et ß3 régulent l'état de glycosylation du canal Nav1.7, et stabilisent son expression membranaire. Ceci ouvre de nouvelles perspectives dans l'investigation de l'état de glycosylation des Navs dans des maladies impliquant les sous-unités ß, notamment les douleurs neuropathiques.
Resumo:
Ability to induce protein expression at will in a cell is a powerful strategy used by scientists to better understand the function of a protein of interest. Various inducible systems have been designed in eukaryotic cells to achieve this goal. Most of them rely on two distinct vectors, one encoding a protein that can regulate transcription by binding a compound X, and one hosting the cDNA encoding the protein of interest placed downstream of promoter sequences that can bind the protein regulated by compound X (e.g., tetracycline, ecdysone). The commercially available systems are not designed to allow cell- or tissue-specific regulated expression. Additionally, although these systems can be used to generate stable clones that can be induced to express a given protein, extensive screening is often required to eliminate the clones that display poor induction or high basal levels. In the present report, we aimed to design a pancreatic beta cell-specific tetracycline-inducible system. Since the classical two-vector based tetracycline-inducible system proved to be unsatisfactory in our hands, a single vector was eventually designed that allowed tight beta cell-specific tetracycline induction in unselected cell populations.
Resumo:
We study the Brownian motion in velocity-dependent fields of force. Our main result is a Smoluchowski equation valid for moderate to high damping constants. We derive that equation by perturbative solution of the Langevin equation and using functional derivative techniques.
Resumo:
We propose a simple geometrical prescription for coupling a test quantum scalar field to an "inflaton" (classical scalar field) in the presence of gravity. When the inflaton stems from the compactification of a Kaluza-Klein theory, the prescription leaves no arbitrariness and amounts to a dimensional reduction of the Klein-Gordon equation. We discuss the possible relevance of this coupling to "reheating" in inflationary cosmologies.
Resumo:
We present a new class of sequential adsorption models in which the adsorbing particles reach the surface following an inclined direction (shadow models). Capillary electrophoresis, adsorption in the presence of a shear, and adsorption on an inclined substrate are physical manifestations of these models. Numerical simulations are carried out to show how the new adsorption mechanisms are responsible for the formation of more ordered adsorbed layers and have important implications in the kinetics, in particular, modifying the jamming limit.
Resumo:
In this paper, we develop a data-driven methodology to characterize the likelihood of orographic precipitation enhancement using sequences of weather radar images and a digital elevation model (DEM). Geographical locations with topographic characteristics favorable to enforce repeatable and persistent orographic precipitation such as stationary cells, upslope rainfall enhancement, and repeated convective initiation are detected by analyzing the spatial distribution of a set of precipitation cells extracted from radar imagery. Topographic features such as terrain convexity and gradients computed from the DEM at multiple spatial scales as well as velocity fields estimated from sequences of weather radar images are used as explanatory factors to describe the occurrence of localized precipitation enhancement. The latter is represented as a binary process by defining a threshold on the number of cell occurrences at particular locations. Both two-class and one-class support vector machine classifiers are tested to separate the presumed orographic cells from the nonorographic ones in the space of contributing topographic and flow features. Site-based validation is carried out to estimate realistic generalization skills of the obtained spatial prediction models. Due to the high class separability, the decision function of the classifiers can be interpreted as a likelihood or susceptibility of orographic precipitation enhancement. The developed approach can serve as a basis for refining radar-based quantitative precipitation estimates and short-term forecasts or for generating stochastic precipitation ensembles conditioned on the local topography.
Resumo:
(2+1)-dimensional anti-de Sitter (AdS) gravity is quantized in the presence of an external scalar field. We find that the coupling between the scalar field and gravity is equivalently described by a perturbed conformal field theory at the boundary of AdS3. This allows us to perform a microscopic computation of the transition rates between black hole states due to absorption and induced emission of the scalar field. Detailed thermodynamic balance then yields Hawking radiation as spontaneous emission, and we find agreement with the semiclassical result, including greybody factors. This result also has application to four and five-dimensional black holes in supergravity.
Resumo:
In this article we present a detailed analysis of the kinetics of a class of sequential adsorption models that take into account the effect of externally applied fields (as an electric field, or a shear rate) on the adsorption. The excluded volume interactions related to the finite size of the adsorbing particles are modified by the external fields. As a result, new adsorption mechanisms appear with respect to the ones used to describe the kinetics in a quiescent fluid. In particular, if the adsorbing particles are allowed to roll over preadsorbed ones, adsorption becomes non local even in the simplest geometry. An exact analytic theory cannot be developed, but we introduce a self-consistent theory that turns out to agree with the simulation results over all the range of the parameters.
Resumo:
In this article we present a detailed analysis of the kinetics of a class of sequential adsorption models that take into account the effect of externally applied fields (as an electric field, or a shear rate) on the adsorption. The excluded volume interactions related to the finite size of the adsorbing particles are modified by the external fields. As a result, new adsorption mechanisms appear with respect to the ones used to describe the kinetics in a quiescent fluid. In particular, if the adsorbing particles are allowed to roll over preadsorbed ones, adsorption becomes non local even in the simplest geometry. An exact analytic theory cannot be developed, but we introduce a self-consistent theory that turns out to agree with the simulation results over all the range of the parameters.
Resumo:
We present an exact solution for the order parameters that characterize the stationary behavior of a population of Kuramotos phase oscillators under random external fields [Y. Kuramoto, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, Vol. 39 (Springer, Berlin, 1975), p. 420]. From these results it is possible to generate the phase diagram of models with an arbitrary distribution of random frequencies and random fields.
Resumo:
RATIONALE: Many sources of conflict exist in intensive care units (ICUs). Few studies recorded the prevalence, characteristics, and risk factors for conflicts in ICUs. OBJECTIVES: To record the prevalence, characteristics, and risk factors for conflicts in ICUs. METHODS: One-day cross-sectional survey of ICU clinicians. Data on perceived conflicts in the week before the survey day were obtained from 7,498 ICU staff members (323 ICUs in 24 countries). MEASUREMENTS AND MAIN RESULTS: Conflicts were perceived by 5,268 (71.6%) respondents. Nurse-physician conflicts were the most common (32.6%), followed by conflicts among nurses (27.3%) and staff-relative conflicts (26.6%). The most common conflict-causing behaviors were personal animosity, mistrust, and communication gaps. During end-of-life care, the main sources of perceived conflict were lack of psychological support, absence of staff meetings, and problems with the decision-making process. Conflicts perceived as severe were reported by 3,974 (53%) respondents. Job strain was significantly associated with perceiving conflicts and with greater severity of perceived conflicts. Multivariate analysis identified 15 factors associated with perceived conflicts, of which 6 were potential targets for future intervention: staff working more than 40 h/wk, more than 15 ICU beds, caring for dying patients or providing pre- and postmortem care within the last week, symptom control not ensured jointly by physicians and nurses, and no routine unit-level meetings. CONCLUSIONS: Over 70% of ICU workers reported perceived conflicts, which were often considered severe and were significantly associated with job strain. Workload, inadequate communication, and end-of-life care emerged as important potential targets for improvement.