959 resultados para Thin Film Electroluminescent Devices
Resumo:
We demonstrate a strikingly novel morphology of high-density polyethylene (HDPE) crystal obtained upon melt crystallization of spin-coated thin film. This crystal gives windmill-like morphology which contains a number of petals. A detailed inspection on this morphology reveals that each petal is actually composed of terrace-stacked PE lamellae, in which the polymer chains within crystallographic a-c planes adopt similar to 45 degrees tilting around b-axis. The surrounding domains associated with a petal of the windmill composed of twisted lamellar overgrowths with an identical orientation of their long axis, which is the crystallographic b-axis shared by the petal and its corresponding twisted lamellar overgrowths.
Resumo:
In this article, vertical structure p-type permeable-base organic transistors were proposed and demonstrated. A hole-type organic semiconductor N,N-'-diphentyl-N,N-'-bis(1-naphthylphenyl)-1,1(')-biphenyl-4,4(')-diamine was used as emitter and collector. In the permeable-base transistors, the metal base was formed by firstly coevaporating Al and Ca in vacuum and then annealing at 120 degrees C for 5 min in air, followed by a thin Al deposition. These devices show a common-base current gain of near 1.0 and a common-emitter current gain of similar to 270.
Resumo:
We demonstrate a low threshold polymer solid state thin-film distributed feedback (DFB) laser on an InP substrate with the DFB structure. The used gain medium is conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) doped polystyrene (PS) and formed by drop-coating method. The second order Bragg scattering region on the InP substrate gave rise to strong feedback, thus a lasing emission at 638.9nm with a line width of 1.2nm is realized when pumped by a 532nm frequency-doubled Nd: YAG pulsed laser. The devices show a laser threshold as low as 7 nJ/pulse.
Resumo:
The structural evolution of a single-layer latex film during annealing was studied via grazing incidence ultrasmall-angle X-ray scattering (GIUSAXS) and atomic force microscopy (AFM). The latex particles were composed of a low-T-g (-54 degrees C) core (n-butylacrylate, 30 wt %) and a high-T-g (41 degrees C) shell (t-butylacrylate, 70 wt %) and had an overall diameter of about 500 nm. GIUSAXS data indicate that the q(y) scan at q(z) = 0.27 nm(-1) (out-of-plane scan) contains information about both the structure factor and the form factor. The GIUSAXS data on latex films annealed at various temperatures ranging from room temperature to 140 degrees C indicate that the structure of the latex thin film beneath the surface changed significantly. The evolution of the out-of-plane scan plot reveals the surface reconstruction of the film. Furthermore, we also followed the time-dependent behavior of structural evolution when the latex film was annealed at a relatively low temperature (60 degrees C) where restructuring within the film can be followed that cannot be detected by AFM, which detects only surface morphology.
Resumo:
In this paper, low surface energy separators With undercut structures were fabricated through a full solution process, These low Surface energy separators are more suitable for application in inkjet printed passive-matrix displays of polymer light-emitting diodes. A patterned PS film was formed on the P4VP/photoresist film by microtransfer printing firstly. Patterned Au-coated Ni film was formed on the uncovered P4VP/photoresist film by electroless deposition. This metal film was used as mask to pattern the photoresist layer and form undercut structures with the patterned photoresist layer. The surface energy of the metal film also decreased dramatically from 84.6 mj/m(2) to 21.1 mJ/m(2) by modification of fluorinated mercaptan self-assemble monolayer on Au surface. The low surface energy separators were used to confine the flow of inkjet printed PFO solution and improve the patterning resolution of inkjet printing successfully. Separated PFO stripes, complement with the pattern of the separators, formed through inkjet printing.
Resumo:
A series of carbazole derivatives was synthesized and their electrical and photophysical properties were investigated. It is shown that the triplet energy levels of these hosts are higher than that of the most popular blue phosphorescent material iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C-2'] picolinate (FIrpic) and the most extensively used phosphorescent host material 4,4'-N,N'-dicarbazole-biphenyl (CBP). These new host materials also showed good thermal stability and high glass transition temperatures (T-g) ranging from 78 to 115 degrees C as the linkage group between the carbazoles was altered. Photophysical measurements indicate that the energy transfer between these new hosts and FIrpic is more efficient than that between CBP and FIrpic. Devices incorporating these novel carbazole derivatives as the host material doped with FIrpic were fabricated with the configurations of ITO/NPB (40 nm)/host:FIrpic (30 nm)/BCP (15 nm)/AlQ (30 nm)/LiF (1 nm)/Al (150 nm). High efficiencies (up to 13.4 cd/A) have been obtained when 1,4-bis (4-(9H-carbazol-9-yl)phenyl)cyclohexane (CBPCH) and bis(4-(9H-carbazol-9-yl)phenyl) ether (CBPE) were used as the host, respectively.
Resumo:
Polystyrenc film of about 50 nm in thickness on silicon wafer was obtained by spin-coating in tetrahydrofuran solution.The film exhibits a rough surface as shown by atomic force microscopy images and ellipsometry data.
Resumo:
To improve the reproducibility, stability, and sensitivity of bismuth film electrode (BiFE), we studied the performances of a mixed coating of two cation-exchange polymers, Nafion (NA) and poly(sodium 4-styrenesulfonate) (PSS), modified glassy carbon BiFE (GC/NA-PSS/BiFE). The characteristics of GC/NA-PSS/BiFE were investigated by scanning electron microscopy and cyclic voltammetry. Various parameters were studied in terms of their effect on the anodic stripping voltarnmetry (ASV) signals. Under optimized conditions, the limits of detection were 71 ng L-1 for Cd(II) and 93 ng L-1 for Pb(II) with a 10 min preconcentration. The results exhibited that GC/NA-PSS/BiFE can be a reproducible and robust toot for monitor of trace metals by ASV rapidly and environmentally friendly, even in the presence of surface-active compounds.
Resumo:
We have fabricated and measured a series of electroluminescent devices with the structure of ITO/TPD/Eu(TTA)(3)phen (x):CBP/BCP/ ALQ/LiF/Al, where x is the weight percentage of Eu(TTA)3phen (from 0% to 6%). At very low current density, carrier trapping is the dominant luminescent mechanism and the 4% doped device shows the highest electroluminescence (EL) efficiency among all these devices. With increasing current density, Forster energy transfer participates in EL process. At the current density of 10.0 and 80.0mA/ cm(2), 2% and 3% doped devices show the highest EL efficiency, respectively. From analysis of the EL spectra and the EL efficiency-current density characteristics, we found that the EL efficiency is manipulated by Forster energy transfer efficiency at high current density. So we suggest that the dominant luminescent mechanism changes gradually from carrier trapping to Forster energy transfer with increasing current density. Moreover, the conversion of dominant EL mechanism was suspected to be partly responsible for the EL efficiency roll-off because of the lower EL quantum efficiency of Forster energy transfer compared with carrier trapping.
Resumo:
Four novel Ir-III and Pt-II complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84 nm for the Ir complexes and 63 nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ(3)/LiF/Al can attain very high efficiencies.
Resumo:
We have systematically studied the thin film morphologies of asymmetric polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer subjected to solvent vapors of varying selectivity for the constituent blocks. Upon a short treatment in neutral or PS-selective vapor, the film exhibited a highly ordered array of hexagonally packed, cylindrical microdomains. In the case of PEO selective vapor annealing, such ordered cylindrical microdomains were not obtained. instead, fractal patterns on the microscale were observed and their growth processes investigated. Furthermore, hierarchical structures could be obtained if the fractal pattern was exposed to neutral or PS selective vapor.
Resumo:
Negative differential resistance (NDR) and memory effect were observed in diodes based on 1,4-dibenzyl C60 (DBC) and zinc phthalocyanine doped polystyrene hybrid material. Certain negative starting sweeping voltages led to a reproducible NDR, making the hybrid material a promising candidate in memory devices. It was found that the introduction of DBC enhanced the ON/OFF current ratio and significantly improved the memory stability. The ON/OFF current ratio was up to 2 orders of magnitude. The write-read-erase-reread cycles were more than 10(6), and the retention time reached 10 000 s without current degradation.
Resumo:
Ordered hexagonal droplets patterns in phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/PVP) formed due to the convection effect by solvent evaporation. The influences of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to PVP on the PVP-rich domains pattern formation and distributions were investigated by atomic force microscope (AFM). Only in an appropriate range of molecular weight of PS, can the ordered pattern form. Too low or too high molecular weight of PS led no ordered pattern due to the viscosity effects. The increase of solvent evaporation rate decreased the mean radius of the PVP-rich domains and the intervals between the centers of the domains due to the enhancement of the viscosity on the top layer of the fluid film. The increase of the weight ratio of PS to PVP decreased mean radius of the PVP-rich domains whereas the intervals between the centers of droplets remained constant. Therefore, the size and the distributions of ordered patterns can be tuned by the polymer molecular weight, the weight ratio of the two components and the solvent evaporation rate.
Resumo:
By doping a fluorescent dye in the emissive layer, we realized high efficient red organic light-emitting diodes (OLEDs) based on a europium complex. The OLEDs realized by this method showed pure red emission at 612 nm with a full width at half maximum Of 3 nm. The Commission International de L'Eclairage Coordination keeps approximately the same as the emission of pure Eu3+. The maximum brightness and EL efficiency reached 2450 cd/m(2) at 20 V and 9.0 cd/A (6.0 lm/w) at a current density of 0.012 mA/cm(2), respectively. At the brightness of 100 cd/m(2), the current efficiency reached 4.4 cd/A.
Resumo:
Polyester thin films containing europium-substituted heteropolytungstate were obtained on quartz plate by the sol-gel method. The films exhibited the characteristic emission bands of the europium ion. The red to orange intensity ratio (R:O) of Eu3+ in the films increased as compared to the corresponding heteropolytungstate solids. The fluorescence lifetime of europium is shorter in the thin film than in the heteropolytungstate solid. The results indicated that the formation of europium-substituted heteropolytungstate/polyester thin film has great effect on the luminescence of europium- substituted heteropolytungstate.