956 resultados para Thematic interference


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important role of RNA interference (RNAi)-like pathways in plants is defense against viral infection. Viruses can overcome this defense by expressing proteins that suppress the pathway. A new study of Agrobacterium tumefaciens infection reveals that this plant pathogen, although a bacterium, also induces and then suppresses the host RNAi response. © 2006 Nature Publishing Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleotide sequences of several animal, plant and bacterial genomes are now known, but the functions of many of the proteins that they are predicted to encode remain unclear. RNA interference is a gene-silencing technology that is being used successfully to investigate gene function in several organisms - for example, Caenorhabditis elegans. We discuss here that RNA-induced gene silencing approaches are also likely to be effective for investigating plant gene function in a high-throughput, genome-wide manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants fight viral infections with enzymes that digest viral RNA, but viruses retaliate with proteins that suppress these enzymes. To boost their antiviral response plants deploy enzymes with redundant functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in insect small RNA viruses (SRVs) has grown slowly but steadily. A number of new viruses have been analyzed at the sequence level, adding to our knowledge of their diversity at the level of both individual virus species and families. In particular, a number of possible new virus families have emerged. This research has largely been driven by interest in their potential for pest control, as well as in their importance as the causal agents of disease in beneficial arthropods. At the same time, research into known viruses has made valuable contributions to our understanding of an emerging new field of central importance to molecular biology-the existence of RNA-based gene silencing, developmental control, and adaptive immune systems in eukaryotes. Subject to RNA-based adaptive immune responses in their hosts, viruses have evolved a variety of genes encoding proteins capable of suppressing the immune response. Such genes were first identified in plant viruses, but the first examples known from animal viruses were identified in insect RNA viruses. This chapter will address the diversity of insect SRVs, and attempts to harness their simplicity in the engineering of transgenic plants expressing viruses for resistance to insect pests. We also describe RNA interference and antiviral pathways identified in plants and animals, how they have led viruses to evolve genes capable of suppressing such adaptive immunity, and the problems presented by these pathways for the strategy of expressing viruses in transgenic plants. Approaches for countering these problems are also discussed. © 2006 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivation: Gene silencing, also called RNA interference, requires reliable assessment of silencer impacts. A critical task is to find matches between silencer oligomers and sites in the genome, in accordance with one-to-many matching rules (G-U matching, with provision for mismatches). Fast search algorithms are required to support silencer impact assessments in procedures for designing effective silencer sequences.Results: The article presents a matching algorithm and data structures specialized for matching searches, including a kernel procedure that addresses a Boolean version of the database task called the skyline search. Besides exact matches, the algorithm is extended to allow for the location-specific mismatches applicable in plants. Computational tests show that the algorithm is significantly faster than suffix-tree alternatives. © The Author 2010. Published by Oxford University Press. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

White light strongly promotes dormancy in freshly harvested cereal grains, whereas dark and after-ripening have the opposite effect. We have analyzed the interaction of light and after-ripening on abscisic acid (ABA) and gibberellin (GA) metabolism genes and dormancy in barley (Hordeum vulgare ‘Betzes’). Analysis of gene expression in imbibed barley grains shows that different ABA metabolism genes are targeted by white light and after-ripening. Of the genes examined, white light promotes the expression of an ABA biosynthetic gene, HvNCED1, in embryos. Consistent with this result, enzyme-linked immunosorbent assays show that dormant grains imbibed under white light have higher embryo ABA content than grains imbibed in the dark. After-ripening has no effect on expression of ABA biosynthesis genes, but promotes expression of an ABA catabolism gene (HvABA8′OH1), a GA biosynthetic gene (HvGA3ox2), and a GA catabolic gene (HvGA2ox3) following imbibition. Blue light mimics the effects of white light on germination, ABA levels, and expression of GA and ABA metabolism genes. Red and far-red light have no effect on germination, ABA levels, or HvNCED1. RNA interference experiments in transgenic barley plants support a role of HvABA8′OH1 in dormancy release. Reduced HvABA8′OH1 expression in transgenic HvABA8′OH1 RNAi grains results in higher levels of ABA and increased dormancy compared to nontransgenic grains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies of gene silencing in plants have revealed two RNA-mediated epigenetic processes, RNA-directed RNA degradation and RNA-directed DNA methylation. These natural processes have provided new avenues for developing high-efficiency, high-throughput technology for gene suppression in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic studies are revealing the pathway for RNA-mediated gene silencing. Short RNA molecules are the key, giving sequence specificity for RNA degradation and mediating communication within and between cells; these short RNAs are common to transcriptional and post-transcriptional silencing pathways. The expression of transgenes in plants varies between independent transformants and there are many examples where the transgenic trait is not expressed, or disappears in subsequent generations, despite the presence of the transgene. This loss of a trait, but not of the transgene, has become known as gene silencing and can take two forms, transcriptional or post-transcriptional. As their names imply, transcriptional gene silencing occurs when a transgene is not transcribed, whereas in post-transcriptional gene silencing, the transgene mRNA is produced but degraded before it is translated (reviewed in [1]). Both forms of silencing seem to be the result of inherent mechanisms for protecting plants against mobile or invading DNA — for example, transposable elements or the T-DNA of Agrobacterium — or RNA viruses. Plants are not alone in their capacity for transgene silencing; both forms of silencing occur in flies and fungi, where it is known as RIP or quelling, while nematodes exhibit post-transcriptional silencing, generally referred to as RNA interference (RNAi). A clearer picture of the mechanisms and relationships of the different types of transgene silencing is beginning to emerge from a number of recent studies [2], [3], [4], [5], [6], [7] and [8]. Some of these studies [2], [3], [4] and [5] have enhanced our understanding of the steps within the post-transcriptional silencing pathway, and others [6], [7] and [8] have demonstrated that the two forms of silencing may be mechanistically linked.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila possesses the core gene silencing machinery but, like all insects, lacks the canonical RNA-dependent RNA polymerases (RdRps) that in C. elegans either trigger or enhance two major small RNA-dependent gene silencing pathways. Introduction of two different nematode RdRps into Drosophila showed them to be functional, resulting in differing silencing activities. While RRF-1 enhanced transitive dsRNA-dependent silencing, EGO-1 triggered dsRNA-independent silencing, specifically of transgenes. The strain w; da-Gal4; UAST-ego-1, constitutively expressing ego-1, is capable of silencing transgene including dsRNA hairpin upon a single cross, which created a powerful tool for research in Drosophila. In C. elegans, EGO-1 is involved in transcriptional gene silencing (TGS) of chromosome regions that are unpaired during meiosis. There was no opportunity for meiotic interactions involving EGO-1 in Drosophila that would explain the observed transgene silencing. Transgene DNA is, however, unpaired during the pairing of chromosomes in embryonic mitosis that is an unusual characteristic of Diptera, suggesting that in Drosophila, EGO-1 triggers transcriptional silencing of unpaired DNA during embryonic mitosis. © 2012 Springer Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0PE, in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0PE has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0PE destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery. © 2012 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In plant cells, DICER-LIKE4 processes perfectly double-stranded RNA (dsRNA) into short interfering (si) RNAs, and DICER-LIKE1 generates micro (mi) RNAs from primary miRNA transcripts (pri-miRNA) that form fold-back structures of imperfectly dsRNA. Both si and miRNAs direct the endogenous endonuclease, ARGONAUTE1 to cleave complementary target single-stranded RNAs and either small RNA (sRNA)-directed pathway can be harnessed to silence genes in plants. A routine way of inducing and directing RNA silencing by siRNAs is to express self-complementary single-stranded hairpin RNA (hpRNA), in which the duplexed region has the same sequence as part of the target gene's mRNA. Artificial miRNA (amiRNA)-mediated silencing uses an endogenous pri-miRNA, in which the original miRNA/miRNA* sequence has been replaced with a sequence complementary to the new target gene. In this chapter, we describe the plasmid vector systems routinely used by our research group for the generation of either hpRNA-derived siRNAs or amiRNAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila melanogaster, along with all insects and the vertebrates, lacks an RdRp gene. We created transgenic strains of Drosophila melanogaster in which the rrf-1 or ego-1 RdRp genes from C. elegans were placed under the control of the yeast GAL4 upstream activation sequence. Activation of the gene was performed by crossing these lines to flies carrying the GAL4 transgene under the control of various Drosophila enhancers. RT-PCR confirmed the successful expression of each RdRp gene. The resulting phenotypes indicated that introduction of the RdRp genes had no effect on D. melanogaster morphological development. © 2010 Springer Science+Business Media B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dicers are associated with double-stranded RNA-binding proteins (dsRBPs) in animals. In the plant, Arabidopsis, there are four dicer-like (DCL) proteins and five potential dsRBPs. These DCLs act redundantly and hierarchically. However, we show there is little or no redundancy or hierarchy amongst the DRBs in their DCL interactions. DCL1 operates exclusively with DRB1 to produce micro (mi)RNAs, DCL4 operates exclusively with DRB4 to produce trans-acting (ta) siRNAs and 21nt siRNAs from viral RNA. DCL2 and DCL3 produce viral siRNAs without requiring assistance from any dsRBP. DRB2, DRB3 and DRB5 appear unnecessary for mi-, tasi-, viral si-, or heterochromatinising siRNA production but act redundantly in a developmental pathway. © 2008 Federation of European Biochemical Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the discovery of RNAi, its mechanism in plants and animals has been intensively studied, widely exploited as a research tool, and used for a number of potential commercial applications. In this article, we discuss the platforms for delivering RNAi in plants. We provide a brief background to these platforms and concentrate on discussing the more recent advances, comparing the RNAi technologies used in plants with those used in animals, and trying to predict the ways in which RNAi technologies may further develop. © 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Posttranscriptional silencing (PTGS) in plants, nematodes, Drosophila, and perhaps all eukaryotes operates by sequence-specific degradation or translational inhibition of the target mRNA. These processes are mediated by duplexed RNA. In Drosophila and nematodes, double-stranded (ds)RNA or self-complementary RNA is processed into fragments of approximately 21 nt by Dicer-1 [1, 2]. These small interfering RNAs (siRNAs) serve as guides to target degradation of homologous single-stranded (ss)RNA [1, 3]. In some cases, the approximately 21 nt guide fragments derived from endogenous, imperfectly self-complementary RNAs cause translational inhibition of their target mRNAs, with which they have substantial, but not perfect sequence complementarity [4-6]. These small temporal RNAs (stRNAs) belong to a class of noncoding microRNAs (miRNAs), 20-24 nt in length, that are found in flies, plants, nematodes, and mammals [4, 6-12]. In nematodes, the Dicer-1 enzyme catalyzes the production of both siRNA and stRNA [2, 13-15]. Mutation of the Arabidopsis Dicer-1 homolog, CARPEL FACTORY (CAF), blocks miRNA production [1, 4, 16-18]. Here, we report that the same caf mutant does not block either PTGS or siRNA production induced by self-complementary hairpin RNA. This suggests either that this mutation only impairs miRNA formation or, more interestingly, that plants have two distinct dicer-like enzymes, one for miRNA and another for siRNAi production.