954 resultados para Supervised training
Resumo:
In this paper, a spiking neural network (SNN) architecture to simulate the sound localization ability of the mammalian auditory pathways using the interaural intensity difference cue is presented. The lateral superior olive was the inspiration for the architecture, which required the integration of an auditory periphery (cochlea) model and a model of the medial nucleus of the trapezoid body. The SNN uses leaky integrateand-fire excitatory and inhibitory spiking neurons, facilitating synapses and receptive fields. Experimentally derived headrelated transfer function (HRTF) acoustical data from adult domestic cats were employed to train and validate the localization ability of the architecture, training used the supervised learning algorithm called the remote supervision method to determine the azimuthal angles. The experimental results demonstrate that the architecture performs best when it is localizing high-frequency sound data in agreement with the biology, and also shows a high degree of robustness when the HRTF acoustical data is corrupted by noise.
Resumo:
Current and past research has brought up new views related to the optimization of neural networks. For a fixed structure, second order methods are seen as the most promising. From previous works we have shown how second order methods are of easy applicability to a neural network. Namely, we have proved how the Levenberg-Marquard possesses not only better convergence but how it can assure the convergence to a local minima. However, as any gradient-based method, the results obtained depend on the startup point. In this work, a reformulated Evolutionary algorithm - the Bacterial Programming for Levenberg-Marquardt is proposed, as an heuristic which can be used to determine the most suitable starting points, therefore achieving, in most cases, the global optimum.
Resumo:
This experimental study focuses on a detection system at the seismic station level that should have a similar role to the detection algorithms based on the ratio STA/LTA. We tested two types of neural network: Multi-Layer Perceptrons and Support Vector Machines, trained in supervised mode. The universe of data consisted of 2903 patterns extracted from records of the PVAQ station, of the seismography network of the Institute of Meteorology of Portugal. The spectral characteristics of the records and its variation in time were reflected in the input patterns, consisting in a set of values of power spectral density in selected frequencies, extracted from a spectro gram calculated over a segment of record of pre-determined duration. The universe of data was divided, with about 60% for the training and the remainder reserved for testing and validation. To ensure that all patterns in the universe of data were within the range of variation of the training set, we used an algorithm to separate the universe of data by hyper-convex polyhedrons, determining in this manner a set of patterns that have a mandatory part of the training set. Additionally, an active learning strategy was conducted, by iteratively incorporating poorly classified cases in the training set. The best results, in terms of sensitivity and selectivity in the whole data ranged between 98% and 100%. These results compare very favorably with the ones obtained by the existing detection system, 50%.
Resumo:
Multilayer perceptrons (MLPs) (1) are the most common artificial neural networks employed in a large field of applications. In control and signal processing applications, MLPs are mainly used as nonlinear mapping approximators. The most common training algorithm used with MLPs is the error back-propagation (BP) alg. (1).
Resumo:
Multilayer perceptrons (MLPs) (1) are the most common artificial neural networks employed in a large field of applications. In control and signal processing applications, MLPs are mainly used as nonlinear mapping approximators. The most common training algorithm used with MLPs is the error back-propagation (BP) alg. (1).
Resumo:
The normal design process for neural networks or fuzzy systems involve two different phases: the determination of the best topology, which can be seen as a system identification problem, and the determination of its parameters, which can be envisaged as a parameter estimation problem. This latter issue, the determination of the model parameters (linear weights and interior knots) is the simplest task and is usually solved using gradient or hybrid schemes. The former issue, the topology determination, is an extremely complex task, especially if dealing with real-world problems.
Resumo:
Hintergrund und Fragestellung: Die korrekte intraoperative Positionierung und Einstellung eines mobilen Bildverstärkers (auch C-Bogen) kann zurzeit theoretisch mit Hilfe von Lehrbüchern erlernt, am Gerät selbst aber nur ohne visuelle Rückmeldung, d.h. ohne ein zur Ausrichtung korrespondierendes Röntgenbild, trainiert werden. Hieraus ergibt sich die Fragestellung, inwiefern das Training der Handhabung und richtigen Einstellung des C-Bogens in verschiedenen Operationsszenarien durch ein C-Bogen Simulationssystem als Teil eines CBT-Systems (Computer Based Training) unterstützt werden kann. Methoden: In Kooperation mit Ärzten aus Unfallchirurgie und Radiologie wurde das computer-basierte Trainingssystem virtX entwickelt. virtX kann dem Nutzer verschiedene Aufgaben zur Einstellung eines C-Bogens stellen und die Ausführung und das Ergebnis bewerten. Die Aufgaben können mit Hilfe eines Autorensystems erstellt und vom Trainierenden in verschiedenen Modi erfüllt werden: im rein virtuellen Modus oder im kombinierten virtuell-realen Modus. Im rein virtuellen Modus steuert der Nutzer den virtuellen C-Bogen in einem virtuellen OP-Saal mittels einer grafisch-interaktiven Benutzungsoberfläche. Im virtuell-realen Modus hingegen wird die Ausrichtung eines realen C-Bogens erfasst und auf den virtuellen C-Bogen übertragen. Während der Aufgabenerfüllung kann der Benutzer zu jeder Zeit ein realitätsnahes, virtuelles Röntgenbild erzeugen und dabei alle Parameter wie Blendenstellung, Röntgenintensität, etc. wie bei einem realen C-Bogen steuern. virtX wurde auf einem dreitägigen Kurs für OP-Personal mit 120 Teilnehmern eingesetzt und auf der Basis von Fragebögen evaluiert. Ergebnisse: Von den Teilnehmern gaben 79 einen ausgefüllten Evaluations-Fragebogen ab. Das Durchschnittsalter der 62 weiblichen und 15 männlichen Teilnehmer (zwei o.A.) lag bei 34 ± 9 Jahren, die Berufserfahrung bei 8,3 ± 7,6 Jahren. 18 Personen (23%) gaben an, gelegentlich mit einem C-Bogen zu arbeiten, 61 (77%) arbeiteten regelmäßig damit. Über 83% der befragten Teilnehmer empfanden virtX als eine sinnvolle Ergänzung zur herkömmlichen Ausbildung am C-Bogen. Das virtuelle Röntgen wurde mit einer Zustimmung von 91% der befragten Teilnehmer als besonders wichtig für das Verständnis der Arbeitsweise eines C-Bogens beurteilt. Ebenso erhielt der kombinierte virtuell-reale Modus mit 84% Zustimmung einen vergleichsweise hohen Stellenwert. Schlussfolgerung: Die Befragung zeichnet ein positives Bild der Akzeptanz des virtX-System als substanzielle Ergänzung zur herkömmlichen Ausbildung am C-Bogen.
Resumo:
The certification program is centered on a three-day workshop that includes detailed instruction and a 16-chapter manual/reference guide. The manual/reference guide offers a comprehensive overview of both old and new recycling issues faced by programs including composting, electronics and funding. It also provides detailed information on the requirements of county programs as outlined in the S.C. Solid Waste Policy and Management Act of 1991.
Resumo:
Relatório da prática de ensino supervisionada, Mestrado em Ensino da Informática, Universidade de Lisboa, Instituto de Educação, 2011
Resumo:
Relatório da prática de ensino supervisionada, Mestrado em Ensino de Artes Visuais, Universidade de Lisboa, 2011
Resumo:
Relatório da prática de Ensino Supervisionada, Mestrado em Ensino da Economia e Contabilidade, Universidade de Lisboa, 2014
Resumo:
The purpose of this article is to investigate the involvement of Information and Learning Services staff in the delivery of the Research Training Programme at the University of Worcester, UK with a focus on researcher receptivity. I believe that by constantly reflecting on the development of that part of the programme delivered by ILS and by examining feedback from the sessions, it is possible to improve and increase the level of researcher receptivity. It is hoped that such examination and reflection will be of value and relevance to the IL community since by reflecting on success and failure in a local context and by mapping this reflection to existing research enables librarians to improve the support provided to researchers within their institutions. This article outlines the support given to research students at the University of Worcester in the past, examines the changes leading to present programme delivery and reflects on considerations for future support. The article is underpinned by reference to current research undertaken in international (albeit Western-centric) contexts. I note that the rationale behind changes is embedded in current adult learning and teaching theory. In an increasingly competitive research environment where funding is dependent on a statistically monitored research output, the aim of such support is to integrate any IL contribution into the wider research training programme. Thus resource discovery becomes part of the reflexive research cycle. Implicit in this investigative reflection is the desire of the IL community to constantly strive towards the positive reception of IL into research support programmes which are perceived by researchers as highly valuable to the process and progress of their work.
Resumo:
Relatório da prática de ensino supervisionada, Mestrado em Ensino de Informática, Universidade de Lisboa, Instituto de Educação, 2014
Resumo:
Relatório da Prática de Ensino Supervisionada, (Mestrado em Ensino da Economia e da Contabilidade), Universidade de Lisboa, 2014