939 resultados para Sodium iron ethylenediaminetetraacetic acid
Resumo:
Introduction Novel imaging techniques for prostate cancer (PCa) are required to improve staging and real-time assessment of therapeutic response. We performed preclinical evaluation of newly-developed, biocompatible magnetic nanoparticles (MNPs) conjugated with J591, an antibody specific for prostate specific membrane antigen (PSMA), to enhance magnetic resonance imaging (MRI) of PCa. PSMA is expressed on ∼90% of PCa, including those that are castrate-resistant, rendering it as a rational target for PCa imaging. Materials and Methods The specificity of J591 for PSMA was confirmed by flow cytometric analysis of several PCa cell lines of known PSMA status. MNPs were prepared, engineered to the appropriate size, labeled with DiR fluorophore, and their toxicity to a panel of PC cells was assessed by in vitro Alamar Blue assay. Immunohistochemistry, fluorescence microscopy and Prussian Blue staining (iron uptake) were used to evaluate PSMA specificity of J591-MNP conjugates. In vivo MRI studies (16.4T MRI system) were performed using live immunodeficient mice bearing orthotopic LNCaP xenografts and injected intravenously with J591-MNPs or MNPs alone. Results MNPs were non-toxic to PCa cells. J591-MNP conjugates showed no compromise in specificity of binding to PSMA+ cells and showed enhanced iron uptake compared with MNPs alone. In vivo, tumour targeting (significant MR image contrast) was evident in mice injected with J591-MNPs, but not MNPs alone. Resected tumours from targeted mice had an accumulation of MNPs, not seen in normal control prostate. Conclusions Application of PSMA-targeting MNPs into conventional MRI has potential to enhance PCa detection and localization in real-time, improving patient management.
Resumo:
Patients with burn wounds are susceptible to wound infection and sepsis. This research introduces a novel burn wound dressing that contains silver nanoparticles (SNPs) to treat infection in a 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na(+) ) hydrogel. Silver nitrate was dissolved in AMPS-Na(+) solution and then exposed to gamma irradiation to form SNP-infused hydrogels. The gamma irradiation results in a cross-linked polymeric network of sterile hydrogel dressing and a reduction of silver ions to form SNPs infused in the hydrogel in a one-step process. About 80% of the total silver was released from the hydrogels after 72 h immersion in simulated body fluid solution; therefore, they could be used on wounds for up to 3 days. All the hydrogels were found to be nontoxic to normal human dermal fibroblast cells. The silver-loaded hydrogels had good inhibitory action against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Results from a pilot study on a porcine burn model showed that the 5-mM silver hydrogel was efficient at preventing bacterial colonization of wounds, and the results were comparable to the commercially available silver dressings (Acticoat(TM) , PolyMem Silver(®) ). These results support its use as a potential burn wound dressing.
Resumo:
A novel burn wound hydrogel dressing has been previously developed which is composed of 2-acrylamido-2-methylpropane sulfonic acid sodium salt with silver nanoparticles (silver AMPS). This study compared the cytotoxicity of this dressing to the commercially available silver products; Acticoat™, PolyMem Silver® and Flamazine™ cream. Human keratinocytes (HaCaT and primary HEK) and normal human fibroblasts (NHF) were exposed to dressings incubated on Nunc™ polycarbonate inserts for 24, 48 and 72h. Four different cytotoxicity assays were performed including; Trypan Blue cell count, MTT, Celltiter-Blue™ and Toluidine Blue surface area assays. The results were expressed as relative cell viability compared to an untreated control. The cytotoxic effects of Acticoat™ and Flamazine™ cream were dependent on exposure time and cell type. After 24h exposure, Acticoat™ and Flamazine™ cream were toxic to all tested cell lines. Surprisingly, HaCaTs treated with Acticoat™ and Flamazine™ had an improved ability to survive at 48 and 72h while HEKs and NHFs had no improvement in survival with any treatment. The novel silver hydrogel and PolyMem Silver® showed low cytotoxicity to all tested cell lines at every time interval and these results support the possibility of using the novel silver hydrogel as a burn wound dressing. Researchers who rely on HaCaT cells as an accurate keratinocyte model should be aware that they can respond differently to primary skin cells.
Resumo:
The present study examined the effect of sodium arsenite, cadmium chloride, heat shock and the proteasomal inhibitors MG132, withaferin A and celastrol on heme oxygenase-1 (HO-1; also known as HSP32) accumulation in Xenopus laevis A6 kidney epithelial cells. Immunoblot analysis revealed that HO-1 accumulation was not induced by heat shock but was enhanced by sodium arsenite and cadmium chloride in a dose- and time-dependent fashion. Immunocytochemistry revealed that these metals induced HO-1 accumulation in a granular pattern primarily in the cytoplasm. Additionally, in 20% of the cells arsenite induced the formation of large HO-1-containing perinuclear structures. In cells recovering from sodium arsenite or cadmium chloride treatment, HO-1 accumulation initially increased to a maximum at 12h followed by a 50% reduction at 48 h. This initial increase in HO-1 levels was likely the result of new synthesis as it was inhibited by cycloheximide. Interestingly, treatment of cells with a mild heat shock enhanced HO-1 accumulation induced by low concentrations of sodium arsenite and cadmium chloride. Finally, we determined that HO-1 accumulation was induced in A6 cells by the proteasomal inhibitors, MG132, withaferin A and celastrol. An examination of heavy metal and proteasomal inhibitor-induced HO-1 accumulation in amphibians is of importance given the presence of toxic heavy metals in aquatic habitats.
Resumo:
This paper describes the electrocatalytic oxidation of ascorbic acid (AA) in phosphate buffer solution by the immobilized citrate capped gold nanoparticles (AuNPs) on 1,6-hexanedithiol (HDT) modified Au electrode. X-ray photoelectron spectrum (XPS) of HDT suggests that it forms a monolayer on Au surface through one of the two single bondSH groups and the other single bondSH group is pointing away from the electrode surface. The free single bondSH groups of HDT were used to covalently attach colloidal AuNPs. The covalent attachment of AuNPs on HDT monolayer was confirmed from the observed characteristic carboxylate ion stretching modes of citrate attached with AuNPs in the infra-red reflection absorption spectrum (IRRAS) in addition to a higher reductive desorption charges obtained for AuNPs immobilized on HDT modified Au (Au/HDT/AuNPs) electrode in 0.1 M KOH when compared to HDT modified Au (Au/HDT) electrode. The electron transfer reaction of [Fe(CN)6]4−/3− was markedly hindered at the HDT modified Au (Au/HDT) electrode while it was restored with a peak separation of 74 mV after the immobilization of AuNPs on Au/HDT (Au/HDT/AuNPs) electrode indicating a good electronic communication between the immobilized AuNPs and the underlying bulk Au electrode through a HDT monolayer. The Cottrell slope obtained from the potential-step chronoamperometric measurements for the reduction of ferricyanide at Au/HDT/AuNPs was higher than that of bare Au electrode indicating the increased effective surface area of AuNPs modified electrode. The Au/HDT/AuNPs electrode exhibits excellent electrocatalytic activity towards the oxidation of ascorbic acid (AA) by enhancing the oxidation peak current to more than two times with a 210 mV negative shift in the oxidation potential when compared to a bare Au electrode. The standard heterogeneous electron transfer rate constant (ks) calculated for AA oxidation at Au/HDT/AuNPs electrode was 5.4 × 10−3 cm s−1. The oxidation peak of AA at Au/HDT/AuNPs electrode was highly stable upon repeated potential cycling. Linear calibration plot was obtained for AA over the concentration range of 1–110 μM with a correlation coefficient of 0.9950. The detection limit of AA was found to be 1 μM. The common physiological interferents such as glucose, oxalate ions and urea do not show any interference within the detection limit of AA. The selectivity of the AuNPs modified electrode was illustrated by the determination of AA in the presence of uric acid.
Resumo:
Acid sulfate soils (ASS) is a stress factor that is responsible for the failure of some mangrove restoration projects, including abandoned aquaculture ponds converted from mangrove ecosystems. Through experimental and field studies, this research provides a better understanding of the biogeochemistry of ASS disturbance and the response of mangrove seedlings (Rhizophoraceae) under high metal levels and acidic conditions. This study found that mangrove restorations under ASS disturbance can work but with lower numbers of survived seedlings. To prevent toxicity under high levels of metal, seedlings retained metals in their roots and sparingly distributed them into aerial parts with low mobility. The presence of high levels of potential acidity parameters would allow pyrite to oxidise, thus increasing metal levels and acidity, which in turn affected the survival and growth of the seedlings.
Resumo:
Purpose To investigate the effects of the relatively selective GABAAOr receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on form-deprivation myopia (FDM) in guinea pigs. Methods A diffuser was applied monocularly to 30 guinea pigs from day 10 to 21. The animals were randomized to one of five treatment groups. The deprived eye received daily sub-conjunctival injections of 100 μl TPMPA at a concentration of (i) 0.03 %, ( ii) 0.3 %, or (iii) 1 %, a fourth group (iv) received saline injections, and another (v) no injections. The fellow eye was left untreated. An additional group received no treatment to either eye. Prior to and at the end of the treatment period, refraction and ocular biometry were performed. Results Visual deprivation produced relative myopia in all groups (treated versus untreated eyes, P < 0.05). The amount of myopia was significantly affected by the drug treatment (one-way ANOVA, P < 0.0001); myopia was less in deprived eyes receiving either 0.3 % or 1 % TPMPA (saline = −4.38 ± 0.57D, 0.3 % TPMPA = −3.00 ± 0.48D, P < 0.01; 1 % TPMPA = −0.88 ± 0.51D, P < 0.001). The degree of axial elongation was correspondingly less (saline = 0.13 ± 0.02 mm, 0.3 % TPMPA = 0.09 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.02 ± 0.01 mm, P < 0.001) as was the VC elongation (saline = 0.08 ± 0.01 mm, 0.3 % TPMPA = 0.05 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.01 ± 0.01 mm; P < 0.001). ACD and LT were not affected (one-way ANOVA, P > 0.05). One percent TPMPA was more effective at inhibiting myopia than 0.3 % (P < 0.01), and 0.03 % did not appreciably inhibit the myopia (0.03 % TPMPA versus saline, P > 0.05). Conclusions Sub-conjunctival injections of TPMPA inhibit FDM in guinea pig models in a dose-dependent manner.
Resumo:
We report on the mechanical properties of sodium titanate nanowires (Na2Ti3O7 NW) through a combination of bending experiments and theoretical analysis. Na2Ti3O7 NWs with lateral dimensions ranging from 20–700 nm were synthesized by a hydrothermal approach. A focused ion beam (FIB) was used to manipulate the selected Na2Ti3O7 NW over a hole drilled in an indium tin oxide substrate. After welding the nanowire, a series of bending tests was performed. It was observed that the Na2Ti3O7 NW exhibits a brittle behavior, and a nonlinear elastic deformation was observed before failure. By using the modified Euler–Bernoulli beam theory, such nonlinear elastic deformation is found to originate from a combination of surface effects and axial elongation (arising from the bending deformation). The effective Young's modulus of the Na2Ti3O7 NW was found to be independent of the wire length, and ranges from 21.4 GPa to 45.5 GPa, with an average value of 33 ± 7 GPa. The yield strength of the Na2Ti3O7 NW is measured at 2.7 ± 0.7 GPa.
Resumo:
Inhibition of FASN has emerged as a promising therapeutic target in cancer, and numerous inhibitors have been investigated. However, severe pharmacological limitations have challenged their clinical testing. The synthetic FASN inhibitor triclosan, which was initially developed as a topical antibacterial agent, is merely affected by these pharmacological limitations. Yet, little is known about its mechanism in inhibiting the growth of cancer cells. Here we compared the cellular and molecular effects of triclosan in a panel of eight malignant and non-malignant prostate cell lines to the well-known FASN inhibitors C75 and orlistat, which target different partial catalytic activities of FASN. Triclosan displayed a superior cytotoxic profile with a several-fold lower IC50 than C75 or orlistat. Structure-function analysis revealed that alcohol functionality of the parent phenol is critical for inhibitory action. Rescue experiments confirmed that end product starvation was a major cause of cytotoxicity. Importantly, triclosan, C75 and orlistat induced distinct changes to morphology, cell cycle, lipid content and the expression of key enzymes of lipid metabolism, demonstrating that inhibition of different partial catalytic activities of FASN activates different metabolic pathways. These finding combined with its well-documented pharmacological safety profile make triclosan a promising drug candidate for the treatment of prostate cancer.