978 resultados para Shoot
Resumo:
The effects of foliar and soil applied phosphite on grain yield in common bean (Phaseolus vulgaris L.) grown in a weathered soil under low and adequate phosphate availability were evaluated. In the first experiment, treatments were composed of a 2 x 7 + 2 factorial scheme, with 2 soil P levels supplied as phosphate (40 e 200 mg P dm(-3) soil), 7 soil P levels supplied as phosphite (0-100 mg P dm(-3) soil), and 2 additional treatments (without P supply in soil, and all P supplied as phosphite). In the second experiment, treatments were composed of a 2 x 3 x 2 factorial scheme, with 2 soil phosphate levels (40 e 200 mg P dm(-3) soil), combined with 3 nutrient sources applied via foliar sprays (potassium phosphite, potassium phosphate, and potassium chloride as a control), and 2 foliar application numbers (single and two application). Additional treatments showed that phosphite is not P source for common bean nutrition. Phosphite supply in soil increased the P content in shoot (at full physiological maturity stage) and grains, but at the same time considerably decreased grain yield, regardless of the soil phosphate availability. Foliar sprays of phosphite decreased grain yield in plants grown under low soil phosphate availability, but no effect was observed in plants grown under adequate soil phosphate availability. In general, foliar sprays of phosphate did not satisfactorily improve grain yield of the common bean plants grown under low soil phosphate availability.
Resumo:
The hydroponic cultivation of vegetables has increased markedly in recent years, however, little is known about its chemical composition, which is of extreme importance in view of changing food habits of a considerable fraction of the population seeking food quality. For this reason, cultivation of watercress, chicory, rocket and lettuce American (Lucy Brown) and smooth (cv. Regina) were grown in hydroponics, NFT system, aiming to evaluate the yield, nitrate content and chemical composition. The experiment was conducted in a greenhouse at the Universidade Federal de Santa Catarina, Florianopolis city in the Santa Catarina State (Brazil), from may to july 2004 under a completely randomized design with four replications. The spacing used was 25 x 25 cm for the crops of watercress, chicory and lettuce (cv. Lucy Brown and cv. Regina) and 5 x 5 cm to the rocket. The traits were: number of leaves, nitrate content and chemical composition of vegetables. The lettuce cv. Regina and chicory had higher number of leaves per plant. The watercress had lower water content and higher dry mass of shoots. The largest increase in fresh weight was obtained in chicory, lettuce, cv. Regina. Higher levels of lipids, protein, ash, carbohydrates, calories, fiber and nitrate were obtained from the watercress. The rocket had lower values for the variables fresh and dries the whole plant, shoot and root and leaf number per plant. All cultures showed good visual appearance, low calorie and nitrate levels suitable for human consumption.
Resumo:
This work aimed to evaluate the influence of different concentrations of Zantedeschia aethiopica Spreng. extract on the physiological performance of the seed and on the response of the antioxidant metabolism of lettuce seedlings. The treatments consisted of leaves extracts from Z. aethiopica at concentrations of 0, 6, 12, 25 and 50%. Germination, first germination count, germination speed and index, length of shoot and radicle, seedling total dry mass, chlorophyll content, activity of superoxide dismutase, catalase and ascorbarte peroxidase enzymes, lipid peroxidation, hydrogen peroxide quantification and seedling emergence, length of organs, and total dry mass of seedlings were evaluated. The percentage of germination, the length of the shoot and radicle of seedlings and the total dry mass of seedlings grown in the greenhouse were reduced as the concentration of the extract increased. There were increases of electrical conductivity, of superoxide dismutase, catalase and ascorbate peroxidadase enzymes and the amount of hydrogen peroxide and lipid peroxidation in seedlings with increasing extract concentration. The extract reduced the physiological quality of lettuce seeds and induced an increased production of hydrogen peroxide in seedlings, which increased the activity of antioxidant enzymes that were not effective in tissue detoxification, resulting in cellular damage and increased numbers of abnormal seedlings.
Resumo:
The use of a photodegradable tape was evaluated on 'Valencia' sweet orange nursery trees budded both on Rangpur lime and Swingle citrumelo in a greenhouse in Bebedouro-SP, Brazil, from September to November 2009. On both rootstocks three wrapping procedures were evaluated: i) conventional polyethylene tape wrapped around the bud eye; ii) photodegradable tape wrapped around the bud eye, and iii) photodegradable tape wrapped around the graft junction without covering the bud eye. The following variables were measured: time spent for wrapping, percentage of bud sprouting, length and stem diameter of the scion shoot, and percentage of commercially valuable nursery trees. The trial was conducted following a randomized complete block design, with six treatments, four replications and 12 trees per plot. The use of photodegradable tape, with or without covering the bud eye, anticipated bud sprouting; despite of the longer time spent with wrapping when the photodegradable tape was used. Plants grafted onto the less vigorous Swingle citrumelo rootstock showed lower bud sprout percentages when the bud eye was covered with the photodegradable tape.
Resumo:
Os objetivos deste trabalho foram determinar o controle genético da eficiência no uso do nitrogênio (EUN), identificar a importância das eficiências na absorção (EAN) e na utilização (EUtN) na sua composição, e quantificar relação entre produção de matéria seca da parte aérea (MPS) e do sistema radicular com a EUN e com seus componentes. Foram avaliadas 41 combinações híbridas em duas disponibilidades de N: baixa (BN) e alta (AN). Utilizou-se o delineamento de blocos ao acaso com duas repetições, em arranjo fatorial simples (combinação híbrida x disponibilidade de N). As análises estatísticas foram realizadas por meio das equações de modelos mistos. Correlações de elevada magnitude foram detectadas entre EAN e EUN, bem como entre essas eficiências e a MPS, tanto em BN como em AN. Em ambas as disponibilidades de N, efeitos genéticos aditivos apresentaram maior importância para os caracteres associados à EUN. Dessa forma, a seleção baseada no desempenho individual de linhagens quanto à MPS pode possibilitar a obtenção de genótipos com alta EUN. Independentemente da disponibilidade de N, a EAN é o componente mais importante da EUN.
Resumo:
Transposable elements (TEs) account for a large portion of plant genomes, particularly in grasses, in which they correspond to 50%-80% of the genomic content. TEs have recently been shown to be a source of new genes and new regulatory networks. The most striking contribution of TEs is referred as "molecular domestication", by which the element coding sequence loses its movement capacity and acquires cellular function. Recently, domesticated transposases known as mustang and derived from the Mutator element have been described in sugarcane. In order to improve our understanding of the function of these proteins, we identified mustang genes from Sorghum bicolor and Zea mays and performed a phenetic analysis to assess the diversity and evolutionary history of this gene family. This analysis identified orthologous groups and showed that mustang genes are highly conserved in grass genomes. We also explored the transcriptional activity of sugarcane mustang genes in heterologous and homologous systems. These genes were found to be ubiquitously transcribed, with shoot apical meristem having the highest expression levels, and were downregulated by phytohormones. Together, these findings suggest the possible involvement of mustang proteins in the maintenance of hormonal homeostasis.
Resumo:
This study aimed to characterize the anatomical events and ultrastructural aspects of direct and indirect in vitro organogenesis in Passiflora edulis. Root explants were cultured on induction medium, supplemented with 4.44 mu M 6-benzyladenine. Roots at different stages of development were collected and processed for observation by light microscopy and scanning and transmission electron microscopy. Patterns of direct and indirect regeneration were observed in the explants. During direct organogenesis, the organogenic buds and nodules, formed from meristemoids, originated from the pericycle regions distant from the cut surface. Completely differentiated buds were observed after 20 days of culture. During indirect organogenesis, bud formation occurred via meristemoids at the periphery of the calli, which differentiated from the cortical region of the initial explant. Regardless of the regeneration pattern, the meristemoids had similar ultrastructural characteristics; however, differences were reported in the nuclear shape of the cells of the meristemoids formed directly and indirectly. This study provides important information for enhancing the understanding and characterization of the organogenic process in non-meristematic explants and provides information on the use of roots as explants in genetic transformation protocols for this important tropical species.
Resumo:
The aim of this study was to perform an in vitro evaluation of the auxin: cytokinine ratio in different segments of the epicotyl and hypocotyl of Sacha inchi (Plukenetia Volubilis Linneo) seeds germinated in vitro. The segments apical (A), median (B) and basal (C) were introduced into semi-solid MS culture medium (2.0g L-1 Phytagel), supplemented with MS vitamins, sucrose (30.0g L-1) and submitted to three doses of auxin indolebutyric acid - IBA (0; 0.1; 0.5mg L-1), associated with four doses of the cytokinine benzylaminopurine - BAP (0; 0.1; 0.5; 1.0mg L-1), totaling 36 treatments. After nine weeks of in vitro cultivation, the apical segment ( A) presented shoot formation by direct organogenesis at the concentrations of 0.5 and 1.0 of BAP associated with 0.0 and 0.1 of IBA. It is feasible to use in vitro cultivation with the apical region of seeds germinated in vitro used as explants.
Resumo:
Rangpur lime (Citrus limonia Osbeck) in vitro organogenesis was studied based on explant type and cytokinin culture media supplementation. Four explants types collected from epicotyl or hypocotyl regions of in vitro germinated seedlings were evaluated. The epicotyl-derived explants consisted of epicotyl segments and the hypocotyl-derived explants consisted of the entire hypocotyl segment, the hypocotyl segment attached to a cotyledon fragment, and the hypocotyl segment divided longitudinally. The explants were cultured on EME culture medium supplemented with benzylaminopurine (0, 0.5, 1.0, or 1.5 mg L-1). The evaluation was performed after 6 weeks. Best results considering both the explant responsiveness and number of shoots developed per explants were obtained when epicotyl segments-derived explants were evaluated. Considering the explant responsiveness of hypocotyl segments-derived explants no difference was detected between the entire hypocotyl segment and the hypocotyl segment attached to a cotyledon fragment. Moreover, the percentage of responsive explants decreased when hypocotyl segments divided longitudinally were tested. No difference was detected for the number of shoots developed per explant considering the three types of hypocotyl-derived explants. Culture media supplementation with BAP was not essential for Rangpur lime in vitro organogenesis. However, adventitious shoot development was stimulated in concentrations between 0.5 - 1.0 mg L-1.
Resumo:
The objective of this study was to evaluate the effect of inoculation of arbuscular mycorrhizae fungi (AMF) and rhizobium on rooting, growth and nutrition of seedlings of angico-red (Anadenanthera macrocarpa (Benth) Brenan) propagated by minicutting. Six progenies were used, of which were prepared cuttings with a pair of complete leaves. It was used a 55 cm(3)container filled with commercial substrate Bioplant (R). Four treatments were tested: 8 kg m-3 of superphosphate (SS) added to substrate; 4 kg m-3 SS added to substrate; 4 kg m-3 SS added to substrate and adition of a suspension solution containing rhizobium; 4 kg m-3 SS and suspension solution containing rhizobium plus 5 g of soil contaminated by AMF spores. There was no interaction among treatments for survival rate of cuttings and roots observed at bottom of the container, evaluated in the greenhouse exit (30 days) and the shade house exit (40 days), probably because the root system was still in formation. There were differences among the progeny for survival rate of the shoots, the percentage of cuttings with roots observed at bottom of the container, height, stem diameter and shoot dry weight. The evaluations of the growth characteristics of the cuttings in, particularly with respect to survival at full sun (140 days), demonstrate the efficiency of rhizobium and AMF on seedling production of this species. We conclude that the symbiotic association with rhizobium and / or FMA favors the production of seedlings of A. macrocarpa by minicutting.
Resumo:
Brazilian pine (Araucaria angustifolia (Bert) O. Ktze) is the only native conifer species with economic importance in Brazil. Recently, due to intensive exploitation Brazilian pine was included in the official list of endangered Brazilian plants, under the "vulnerable" category. Biotechnology tools like somatic embryogenesis (SE) are potentially useful for mass clonal propagation and ex situ conservation strategies of commercial and endangered plant species. In spite of that, numerous obstacles still hamper the full application of SE technology for a wider range of species, including Brazilian pine. To enhance somatic embryogenesis in Brazilian pine and to gain a better understanding of the molecular events associated with somatic embryo development, we analyzed the steady-state transcript levels of genes known to regulate somatic embryogenesis using semiquantitative reverse transcription polymerase chain reaction (sqRT-PCR). These genes included Argonaute (AaAGO), Cup-shaped cotyledon1 (AaCUC), wushel-related WOX (AaWOX), a S-locus lectin protein kinase (AaLecK), Scarecrow- like (AaSCR), Vicilin 7S (AaVIC), Leafy Cotyledon 1 (AaLEC), and a Reversible glycosylated polypeptide (AaRGP). Expression patterns of these selected genes were investigated in embryogenic cultures undergoing different stages of embryogenesis, and all the way to maturation. Up-regulation of AaAGO, AaCUC, AaWOX, AaLecK, and AaVIC was observed during transition of somatic embryos from stage I to stage II. During the maintenance phase of somatic embryogenesis, expression of AaAGO and AaSCR, but not AaRPG and AaLEC genes was influenced by presence/ absence of plant growth regulators, both auxins and cytokinins. The results presented here provide new insights on the molecular mechanisms responsible for somatic embryo formation, and how selected genes may be used as molecular markers for Brazilian pine embryogenesis.
Resumo:
The use of sewage sludge is a highly promising practice for the development of sustainable agricultural systems. The objective of this study was to evaluate doses of sewage sludge composted with and without Rhizobium inoculation in leaf N content, nodule number, nodule dry weight and plant during flowering. The experiment was conducted in the greenhouse of the Department of Soil Science and Natural Resources College of Agricultural Sciences of Botucatu, using as substrate used in vessels of 30 liters a Red Yelow Latosol sandy texture with experimental design adopted was randomized blocks constituted for 10 treatments and five doses of composted sewage sludge (0, 10, 20, 30, 40 t ha(-1)) with or without inoculation Bradyrhizobium japonic with three replications. There was an increase in the number and dry weight of nodules and shoot dry mass of soybeans due to the increase of the dose of sludge up to a dose of 20 t ha(-1) and after this dose there was a decrease of these parameters. At a dose of 10 t ha(-1) sludge compost inoculated seeds showed higher for foliar concentrations of N and number of nodules compared with uninoculated seeds. At a dose of 30 t ha(-1) inoculated seeds were higher compared to uninoculated in all parameters.
Resumo:
Abscisic acid (ABA) is an important regulator of plant responses to environmental stresses and an absolute requirement for stress tolerance. Recently, a third phytoene synthase (PSY3) gene paralog was identified in monocots and demonstrated to play a specialized role in stress-induced ABA formation, thus suggesting that the first committed step in carotenogenesis is a key limiting step in ABA biosynthesis. To examine whether the ectopic expression of PSY, other than PSY3, would similarly affect ABA level and stress tolerance, we have produced transgenic tobacco containing a fruit-specific PSY (CpPSY) of grapefruit (Citrus paradisi Macf.). The transgenic plants contained a single- or double-locus insertion and expressed CpPSY at varying transcript levels. In comparison with the wild-type plants, the CpPSY expressing transgenic plants showed a significant increase on root length and shoot biomass under PEG-, NaCl- and mannitol-induced osmotic stress. The enhanced stress tolerance of transgenic plants was correlated with the increased endogenous ABA level and expression of stress-responsive genes, which in turn was correlated with the CpPSY copy number and expression level in different transgenic lines. Collectively, these results provide further evidence that PSY is a key enzyme regulating ABA biosynthesis and that the altered expression of other PSYs in transgenic plants may provide a similar function to that of the monocot's PSY3 in ABA biosynthesis and stress tolerance. The results also pave the way for further use of CpPSY, as well as other PSYs, as potential candidate genes for engineering tolerance to drought and salt stress in crop plants.
Resumo:
Several tests to assess the vigor of seed lots are used by producing companies for internal quality control. The respiratory activity test determined in the Pettenkofer apparatus has potential to be used for this purpose. Therefore, this study aimed to analyze and compare the use of respiratory activity measured in the Pettenkofer apparatus with standard tests to assess the vigor, and classify seed lots of bean-kid in high, medium and low vigor. The respiratory activity of three lots of bean-kid seeds were related to the following tests: germination, first germination count, electrical conductivity, length of shoots and roots, and dry weight of seedlings shoots and roots. The results of germination tests, germination first count, seedling shoot and root length, seedling shoot and root dry mass, electrical conductivity and determination of respiratory activity the seeds, allowed the classification of seeds lots of bean-kid in levels of different vigor. It is concluded that the respiratory activity measured in the Pettenkofer apparatus is efficient for the classification of seed lots of bean-kid according to vigor, being a fast, effective and low cost procedure.
Resumo:
The objective of this work was to evaluate rootstock influence on agronomical, ecophysiological and qualitative characteristics of 'Syrah' vines managed by double pruning. Grapevines were grafted onto 'SO4', '110 Richter' and '1103 Paulsen' rootstocks and trained in vertical shoot position, with no irrigation. Ecophysiological characteristics, yield and composition of ripe grapes were evaluated in three crop seasons (2007, 2008 and 2010). Rootstocks did not affect pre-dawn water potential, with values close to -0.2 MPa, indicating that there was no soil water deficit at the end of ripening (June). There was also no significant effect of rootstocks on yield. The rootstock '1103 Paulsen' induced lower vegetative growth, lower photosynthetic rate and the best results for berry maturation for crop seasons with lower amount of rainfall. The rootstocks '110 Richter' and 'SO4' showed higher vigor under the meteorological conditions of 2010 and the greatest photosynthetic rates in the same period. Meteorological conditions significantly affected technological and phenolic ripeness, with best results observed in drought years. The '1103 Paulsen' rootstock provides better balance between vigor and yield, increasing grape quality.