962 resultados para SEMICONDUCTOR CDS
Resumo:
In this report we investigate the optical properties and energy-transfer upconversion luminescence of Ho3+- and Tb3+/Yb 3+-codoped PbGeO3-PbF2-CdF2 glass-ceramic under infrared excitation. In Ho3+/Yb 3+-codoped sample, green(545 nm), red(652 nm), and near-infrared(754 nm) upconversion luminescence corresponding to the 4S 2(5F4) → 5I8, 5F5 → 5I8, and 4S2(5F4) → 5I 7, respectively, was readly observed. Blue(490 nm) signals assigned to the 5F2,3 → 5I8 transition was also detected. In the Tb3+/Yb3+ system, bright UV-visible emission around 384, 415, 438, 473-490, 545, 587, and 623 nm, identified as due to the 5D3(5G6) → 7FJ(J=6,5,4) and 5D4→ 7FJ(J=6,5,4,3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicate that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed.
Resumo:
We have recently shown that spatial ordering for epitaxially grown InP dots can be obtained using the periodic stress field of compositional modulation on the InGaP buffer layer. The aim of this present work is to study the growth of films of GaP by Chemical Beam Epitaxy (CBE), with in-situ monitoring by Reflection High Energy Electron Diffraction (RHEED), on layers of unstressed and stressed GaAs. Complementary, we have studied the role of a buried InP dot array on GaP nucleation in order to obtain three-dimensional structures. In both cases, the topographical characteristics of the samples were investigated by Atomic Force Microscopy (AFM) in non-contact mode. Thus vertically-coupled quantum dots of different materials have been obtained keeping the in-place spatial ordering originated from the composition modulation. © 2006 Materials Research Society.
Resumo:
The application of multi-wavelength holography for surface shape measurement is presented. In our holographic setup a Bi12TiO 20 (BTO) photorefractive crystal was the holographic recording medium and a multimode diode laser emitting in the red region was the light source in a two-wave mixing scheme. The holographic imaging with multimode lasers results in multiple holograms in the BTO. By employing such lasers the resulting holographic image appears covered of interference fringes corresponding to the object relief and the interferogram spatial frequency is proportional to the diode laser free spectral range (FSR). We used a Fabry-Perot étalon at the laser output for laser mode selection. Thus, larger effective values of the laser FSR were achieved, leading to higher-spatial frequency interferograms and therefore to more sensitive and accurate measurements. The quantitative evaluation of the interferograms was performed through the phase stepping technique (PST) and the phase map unwrapping was carried out through the Cellular-Automata method. For a given surface, shape measurements with different interferogram spatial frequencies were performed and compared, concerning measurement noise and visual inspection.
Resumo:
We investigate the formation of compositional modulation and atomic ordering in InGaP films. Such bulk properties - as well as surface morphologies - present a strong dependence on growth parameters, mainly the V/III ratio. Our results indicate the importance of surface diffusion and, particularly, surface reconstruction for these processes. Most importantly from the application point of view, we show that the compositional modulation is not necessarily coupled to the surface instabilities, so that smooth InGaP films with periodic compositional variation could be obtained. This opens a new route for the generation of templates for quantum dot positioning and three-dimensional arrays of nanostructures. © 2007 American Institute of Physics.
Resumo:
An analysis of the active pixel sensor (APS), considering the doping profiles of the photodiode in an APS fabricated in a 0.18 μm standard CMOS technology, is presented. A simple and accurate model for the junction capacitance of the photodiode is proposed. An analytic expression for the output voltage of the APS obtained with this capacitance model is in good agreement with measurements and is more accurate than the models used previously. A different mode of operation for the APS based on the dc level of the output is suggested. This new mode has better low-light-level sensitivity than the conventional APS operating mode, and it has a slower temporal response to the change of the incident light power. At 1μW/cm2 and lower levels of light, the measured signal-to-noise ratio (SNR) of this new mode is more than 10 dB higher than the SNR of previously reported APS circuits. Also, with an output SNR of about 10 dB, the proposed dc level is capable of detecting light powers as low as 20 nW/cm2, which is about 30 times lower than the light power detected in recent reports by other groups. © 2007 IEEE.
Resumo:
This study sought to assess the pulp chamber temperature in different groups of human teeth that had been bleached using hydrogen peroxide gel activated with halogen lamps or hybrid LED/laser appliances. Four groups of ten teeth (maxillary central incisors, mandibular incisors, mandibular canines, and maxillary canines) were used. A digital thermometer with a K-type thermocouple was placed inside pulp chambers that had been filled with thermal paste. A 35% hydrogen peroxide-based red bleaching gel was applied to all teeth and photocured for a total of three minutes and 20 seconds (five activations of 40 seconds each), using light from an LED/laser device and a halogen lamp. The temperatures were gauged every 40 seconds and the data were analyzed by three-way ANOVA, followed by Tukey's test. Regardless of the light source, statistically significant differences were observed between the groups of teeth. The mean temperature values (±SD) were highest for maxillary central incisors and lowest for mandibular canines. The halogen lamp appliance produced more pulp chamber heating than the LED/laser appliance. The increase in irradiation time led to a significant increase in temperature.
Resumo:
Purpose - The purpose of this paper is to present designs for an accelerated life test (ALT). Design/methodology/approach - Bayesian methods and simulation Monte Carlo Markov Chain (MCMC) methods were used. Findings - In the paper a Bayesian method based on MCMC for ALT under EW distribution (for life time) and Arrhenius models (relating the stress variable and parameters) was proposed. The paper can conclude that it is a reasonable alternative to the classical statistical methods since the implementation of the proposed method is simple, not requiring advanced computational understanding and inferences on the parameters can be made easily. By the predictive density of a future observation, a procedure was developed to plan ALT and also to verify if the conformance fraction of the manufactured process reaches some desired level of quality. This procedure is useful for statistical process control in many industrial applications. Research limitations/implications - The results may be applied in a semiconductor manufacturer. Originality/value - The Exponentiated-Weibull-Arrhenius model has never before been used to plan an ALT. © Emerald Group Publishing Limited.
Resumo:
Using pump-probe reflectometry, we study the ultrafast excited-state dynamics in thin films of BuPTCD, an organic semiconductor, deposited on gold nanoparticles. We observe depletion of the ground state and excited state absorption after photo-excitation. © 2008 Optical Society of America.
Resumo:
The present paper evaluates meta-heuristic approaches to solve a soft drink industry problem. This problem is motivated by a real situation found in soft drink companies, where the lot sizing and scheduling of raw materials in tanks and products in lines must be simultaneously determined. Tabu search, threshold accepting and genetic algorithms are used as procedures to solve the problem at hand. The methods are evaluated with a set of instance already available for this problem. This paper also proposes a new set of complex instances. The computational results comparing these approaches are reported. © 2008 IEEE.
Resumo:
The short-distance part of the low energy interaction of D-mesons and nucleons is investigated in the context of a quark model. The quark model is based on Coulomb gauge QCD. The model contains a confining Coulomb potential and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The basic mechanism for the short-distance interaction between the D-mesons and nucleons is quark interchange. Using Resonating GroupMethod techniques an effective potential for the interaction between nucleons and D mesons can be obtained and used in a Lippmann-Schwinger equation to obtain differential cross-sections and phase shifts.
Resumo:
We present results on the the influence of changes in the masses and sizes of D mesons and nucleons on elastic DN scattering cross sections and phase shifts in a hadronic medium composed of confined quarks in nucleons. We evaluate the changes of the hadronic masses due to changes of the light constituent quarks at finite baryon density using a chiral quark model based on Coulomb gauge QCD. The model contains a confining Coulomb potential and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. We present results for the total cross section and the s-wave phase shift at low energies for isospin I=1-for I=0 and other partial waves the results are similar.
Resumo:
We report a numerical renormalization-group study of the thermoelectric effect in the single-electron transistor (SET) and side-coupled geometries. As expected, the computed thermal conductance and thermopower curves show signatures of the Kondo effect and of Fano interference. The thermopower curves are also affected by particle-hole asymmetry. © 2009 Elsevier B.V. All rights reserved.
Resumo:
This work presents the Petri net-based modeling of an autonomous robot's navigation system used for the application of supplies in agriculture. The model was developed theoretically and implemented through the CPNTools software. It simulates the behavior of the robot, capturing environmental characteristics by means of sensors, making appropriate decisions, and forwarding them to the corresponding actuators. By exciting the model using CPNTools it is possible to simulate situations that the robot might undergo, without the need to expose it to real potentially dangerous situations. ©2009 IEEE.