994 resultados para SAMALL ANGLE SCATTERING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The branched copolymers prepared from ethylene and alpha-olefins using rac-Et(Ind)(2)ZrCl2/MMAO catalyst system were studied. Both the absolute molecular weight ((M) over bar (W)) and the molecular size (radius of glyration, R-g) of the polymers eluting from gel permeation chromatography (GPC) columns were obtained simultaneously via a high temperature GPC coupled with a two-angle laser light scattering (TALLS) detector. The branched structures and performances of the copolymers display approximate molecular weight and molecular sizes were investigated. Wide angle X-ray diffraction analyses indicate that 16-carbon side branch could co-crystallize effectively with backbone chain at low alpha-olefin incorporation. The melt behaviors of the copolymers were studied by dynamic rheological measurements. Both branch length and comonomer content affect considerably the loss modulus, storage modulus and complex viscosity of the copolymers. The relationship between the dynamic-mechanical behavior and the comonomer content of the copolymers was also examined by dynamic-mechanical experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization kinetics and the development of lamellar structure during the isothermal crystallization of poly (epsilon-caprolactone) (PCL) were investigated by means of differential scanning calorimetry (DSC) and real-time synchrotron small angle X-ray scattering (SR-SAXS) techniques, respectively. The Avrami analysis was performed to obtain the kinetics parameters. The value of Avrami index, n, is about 3, demonstrating a three-dimensional spherulitic growth on heterogeneous nuclei in the process of isothermal crystallization. The activation energy and the surface free energy of chain folding for isothermal crystallization were determined according to the Arrhenius equation and Hoffman-Lauritzen theory, respectively. In the process of nonisothermal crystallization of PCL, the value of Avrami index, n, is about 4, which demonstrates a three-dimensional spherulitic growth on homogeneous nuclei. In addition, lamellar parameters were obtained from the analysis of SR-SAXS data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of synthetic poly(propylene carbonate) (PPC) with a natural bacterial copolymer of 3-hydroxybutyrate with 3-hydroxyvalerate (PHBV) containing 8 mol % 3-hydroxyvalerate units were prepared with a simple casting procedure. PPC was thermally stabilized by end-capping before use. The miscibility, morphology, and crystallization behavior of the blends were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction (WAXD), and small-angle Xray scattering (SAXS). PHBV/PPC blends showed weak miscibility in the melt, but the miscibility was very low. The effect of PPC on the crystallization of PHBV was evident. The addition of PPC decreased the rate of spherulite growth of PHBV, and with increasing PPC content in the PHBV/PPC blends, the PHBV spherulites became more and more open. However, the crystalline structure of PHBV did not change with increasing PPC in the PHBV/PPC blends, as shown from WAXD analysis. The long period obtained from SAXS showed a small increase with the addition of PPC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports an aggregation-based method for the fabrication of composite Au/Ag nanoshells with tunable thickness and surface roughness. It is found that the resultant roughened composite Au/Ag nanoshells can attract each other spontaneously to form films at the air-water interface. Importantly, such films can be transferred onto the solid substrates without being destroyed and show excellent surface-enhanced Raman scattering (SERS) enhancement ability. Their strong enhancement ability may stem from the unique two-dimensional structure itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two commercial biaxially oriented polypropylene (BOPP) resins, resin A and resin B, having different processing properties, were fractionated by preparative temperature-rising elution fractionation (TREF). The TREF fractions were further characterized by gel permeation chromatography (GPC), gel permeation chromatography coupled with light scattering (GPC-LS), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). GPC-LS did not find visible long-chain branching in either resin A or B. The results from TREF and DSC indicate that the fractional melting parameter f(T) may be used to predict the profile of the TREF cumulative weight distribution curve. GPC results show that the molecular weights of the fractions tend to increase with elution temperature. WAXD and DSC data show that the crystallinity of fractions does not increase monotonically with increase of elution temperature. There appears to be a maximum in the plot of crystallinity versus elution temperature. The high-speed BOPP resin A has a lower isotacticity but a homogeneous isotacticity distribution and a higher molecular weight but a broader molecular weight distribution than resin B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow-mode static and dynamic laser light scattering (SLS/DLS) studies of polymers, including polystyrene, polyethylene, polypropylene and poly(dimethylsiloxane) (PDMS), in 1,2,4-trichlorobenzene (TCB) at 150 degreesC were performed on a high temperature gel permeation chromatography (GPC) coupled with a SLS/DLS detector. Both absolute molecular weight (M) and molecular sizes (radius of gyration, R-g and hydrodynamic radius, R-h) of polymers eluting from the GPC columns were obtained simultaneously. The conformation of different polymers in TCB at 150 degreesC were discussed according to the scaling relationships between R-g, R-h and M and the rho-ratio (p = R-g/R-h). Flow-mode DLS results of PDMS were verified by batch-mode DLS study of the same sample. The presented technique was proved to be a convenient and quick method to study the shape and conformation of polymers in solution at high temperature. However, the flow-mode DLS was only applicable for high molecular weight polymers with a higher refractive index increment such as PDMS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructure and morphology and their development of poly(di-n-hexylsilane) (PDHS) and poly(di-n-butylsilane) (PDBS) during the crystal-mesophase transition are investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction and hot-stage atomic force microscopy. At room temperature, PDHS consists of stacks of lamellae separated by mesophase layers, which can be well accounted using an ideal two-phase model. During the crystal-mesophase transition, obvious morphological changes are observed due to the marked changes in main chain conformation and intermolecular distances between crystalline phase and mesophase. In contrast to PDHS, the lamellae in PDBS barely show anisotropy in dimensions at room temperature. The nonperiodic structure and rather small electronic density fluctuation in PDBS lead to the much weak SAXS. The nonperiodic structure is preserved during the crystal-mesophase transition because of the similarity of main chain conformation and intermolecular distances between crystalline phase and mesophase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of the small angle X-ray scattering (SAXS) data was based upon particle characteristic function, one-dimensional electron-density correlation function and particle distribution function. The microstructure of nylon 66 with different degrees of crystallinity was studied by means of X-ray scattering method. The radius of gyration R-g, the Porod radius R-p, the thickness of crystalline region L-c the thickness of non-crystalline region L-n, the thickness of interphase region d(tr), the long period L, the semiaxises of particles (a, a, b), the distribution of the particle sizes and the scattering invariant were calculated. The results indicate that there was a significant interphase region between the crystalline region and the non-crystalline region. and its content (W-t,W-x) should not be neglected in comparison with that of crystalline region W-c,W-x. The morphology of nylon 66 prepared by isothermal crystallization at a high temperature was mainly a lamellar structure, while the spherical crystals dominated in the quenched sample. The size of the particles in the quenched sample was smaller than that of those in the isothermally crystallized sample. and the distribution of the particle sizes in the isothermally crystallized sample was wider.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of lattice fluid model, the Gibbs energy and equation of state are derived by introducing the energy (E-s) stored during flow for polymer blends under shear. From the calculation of the spinodal of poly(vinyl methyl ether) (PVME) and polystyrene (PS) mixtures, we have found the influence of E., an equation of state in pure component is inappreciable, but it is appreciable in the mixture. However, the effect of E, on phase separation behavior is extremely striking. In the calculation of spinodal for the PVME/PS system, a thin, long and banana miscibility gap generated by shear is seen beside the miscibility gap with lower critical solution temperature. Meanwhile, a binodal coalescence of upper and lower miscibility gaps is occurred. The three points of the three-phase equilibrium are forecasted. The shear rate dependence of cloud point temperature at a certain composition is discussed. The calculated results are acceptable compared with the experiment values obtained by Higgins et at. However, the maximum positive shift and the minimum negative shift of cloud point temperature guessed by Higgins are not obtained, Furthermore, the combining effects of pressure and shear on spinodal shift are predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have employed several techniques, including cyclic voltammetry, UV-Vis spectrometry, small-angle X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy, to characterize the formation processes and interfacial features of ultrathin multilayer films of silicotungstate and a cationic redox polymer on cysteamine-coated Au electrodes self-assembled monolayers. All of these techniques confirm that the multilayer films are built up stepwise as well as uniformly in a layer-by-layer fashion. In particular, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes. It has been proved that the electrochemical impedance spectroscopy is a very useful technique in characterization of multilayer films because it provides valuable information about the interfacial impedance features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential scanning calorimeter (DSC), wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), and density techniques have been used to investigate the structural parameters of the solid state of Nylon 11 annealed at different temperatures. The equilibrium heat of fusion Delta H-m(0) and equilibrium melting temperature T-m(0) were estimated to be 189.05 J g(-1) and 202.85 degrees C respectively by using the Hoffman-Weeks approach. The degree of crystallinity (W-c,W-x) ranged approximately 24-42% was calculated by WAXD and compared with those by calorimetry (W-c,W-h) and density (W-c,W-d) measurements. The radius of gyration R-g, crystalline thickness L-c, noncrystalline thickness L-a, long period L, semiaxes of the particles (a, b), electron-density difference between the crystalline and noncrystalline regions eta(c) - eta(a), and the invariant Q increased with increasing annealing temperature. The analysis of the SAXS data was based upon the particle characteristic function and the one-dimensional electron-density correlation function. An interphase region existed between the crystalline and noncrystalline region with a clear dimension of about 2 nm for semicrystalline Nylon 11. Instead of the traditional two-phase model, a three-phase model has been proposed to explain these results by means of SAXS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(beta-hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small-angle X-ray scattering (SAXS). As the PMA content increases in the blends, the glass-transition temperature and cold-crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium-melting-point depression, is -0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PRE. The radial growth rates of spherulites were analyzed with the Lauritzen-Hoffman model. The spherulites of PHB were volume-filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. (C) 2000 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple melting behavior was observed in the differential scanning calorimetry (DSC) scans for the isothermally crystallized poly(iminosebacoyl iminodecamethylene) (PA1010) samples. Coexistence of crystal populations with different lamellar thickness in PA1010 was discussed by means of DSC, wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering techniques. During crystallization of the polymer, a major lamellar crystal population developed first, which possessed a higher melting temperature. However, a small fraction of the polymer formed minor crystal population with thinner lamellae, which was metastable and, upon post-annealing, could grow into more stable and thicker lamellae through melting and recrystallization process. Lamellae insertion or stacks would develop during the post-annealing at a lower temperature for the isothermally crystallized samples; thus, multiple crystal populations with different thickness could be produced. It is the multiple distribution of lamella thickness that gives rise to multiple melting behavior of crystalline polymers. (C) 2000 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origins of the single- and double-melting endotherms of isotactic polypropylene crystallized at different temperatures were studied carefully by differential scanning calorimetry, wide-angle X-ray diffraction, and small-angle X-ray scattering. The experimental data show that spontaneous crystallization occurs when the crystallization temperature is lower than 117 degrees C; thus the lamellae formed are imperfect. At a lower heating rate, the recrystallization or reorganization of these imperfect lamellae leads to double endotherms. On the other hand, when the crystallization temperature is higher than 136 degrees C, two major kinds of lamellae with different thickness are developed during the isothermal process, which also results in the double-melting endotherms. In the intermediate temperature range the lamellae formed are perfect, and there is only a single peak in the distribution of lamellar thickness. This explains the origin of the single-melting endotherm. (C) 2000 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization behavior and spherulitic structure of linear high-density polyethylene (HDPE), after being irradiated in its molten state by gamma -rays, was investigated by small-angle laser scattering (SALS) and differential scanning calorimetry (DSC). Significant changes in the crystallization of HDPE during cooling in air before and after being irradiated in the melt were observed. A critical minimum average molar mass between cross-links (200 carbon-carbon bonds) for spherulite formation in such an irradiated HDPE network was obtained.