973 resultados para Reserve Selection Procedures
Resumo:
Host feeding selection by the female pea leafminer, Liriomyza huidobrensis, on 47 species of plants was studied. The leaves were sectioned by microtome, and 15 characteristics of the leaf tissue structure were measured under a microscope. Correlation analysis between host feeding selection and leaf tissue structure indicated that the preference of host feeding selection was positively correlated with the percentage of moisture content of leaves and negatively with thickness of the epidermis wall, and densities of the palisade and spongy tissues of leaves. Leaf tissue structure was influential in feeding and probing behavior of female L. huidobrensis. So, thickness of epidermis wall, densities of the palisade and spongy tissues can act as a physical barrier to female oviposition. Furthermore, higher densities of palisade and spongy tissues can be considered a resistant trait which affects mining of leaf miner larvae as well. As a result, plants with lower leaf moisture content may not be suitable for the development of L. huidobrensis.
Resumo:
Background: There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. Aim. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. Methods. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). Results: The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. Conclusions: A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection. © 2011 Jun et al.
Resumo:
Choosing a project manager for a construction project—particularly, large projects—is a critical project decision. The selection process involves different criteria and should be in accordance with company policies and project specifications. Traditionally, potential candidates are interviewed and the most qualified are selected in compliance with company priorities and project conditions. Precise computing models that could take various candidates’ information into consideration and then pinpoint the most qualified person with a high degree of accuracy would be beneficial. On the basis of the opinions of experienced construction company managers, this paper, through presenting a fuzzy system, identifies the important criteria in selecting a project manager. The proposed fuzzy system is based on IF-THEN rules; a genetic algorithm improves the overall accuracy as well as the functions used by the fuzzy system to make initial estimates of the cluster centers for fuzzy c-means clustering. Moreover, a back-propagation neutral network method was used to train the system. The optimal measures of the inference parameters were identified by calculating the system’s output error and propagating this error within the system. After specifying the system parameters, the membership function parameters—which by means of clustering and projection were approximated—were tuned with the genetic algorithm. Results from this system in selecting project managers show its high capability in making high-quality personnel predictions
Resumo:
Videogrammetry is an inexpensive and easy-to-use technology for spatial 3D scene recovery. When applied to large scale civil infrastructure scenes, only a small percentage of the collected video frames are required to achieve robust results. However, choosing the right frames requires careful consideration. Videotaping a built infrastructure scene results in large video files filled with blurry, noisy, or redundant frames. This is due to frame rate to camera speed ratios that are often higher than necessary; camera and lens imperfections and limitations that result in imaging noise; and occasional jerky motions of the camera that result in motion blur; all of which can significantly affect the performance of the videogrammetric pipeline. To tackle these issues, this paper proposes a novel method for automating the selection of an optimized number of informative, high quality frames. According to this method, as the first step, blurred frames are removed using the thresholds determined based on a minimum level of frame quality required to obtain robust results. Then, an optimum number of key frames are selected from the remaining frames using the selection criteria devised by the authors. Experimental results show that the proposed method outperforms existing methods in terms of improved 3D reconstruction results, while maintaining the optimum number of extracted frames needed to generate high quality 3D point clouds.© 2012 Elsevier Ltd. All rights reserved.
Resumo:
Matching a new technology to an appropriate market is a major challenge for new technology-based firms (NTBF). Such firms are often advised to target niche-markets where the firms and their technologies can establish themselves relatively free of incumbent competition. However, technologies are diverse in nature and do not benefit from identical strategies. In contrast to many Information and Communication Technology (ICT) innovations which build on an established knowledge base for fairly specific applications, technologies based on emerging science are often generic and so have a number of markets and applications open to them, each carrying considerable technological and market uncertainty. Each of these potential markets is part of a complex and evolving ecosystem from which the venture may have to access significant complementary assets in order to create and sustain commercial value. Based on dataset and case study research on UK advanced material university spin-outs (USO), we find that, contrary to conventional wisdom, the more commercially successful ventures were targeting mainstream markets by working closely with large, established competitors during early development. While niche markets promise protection from incumbent firms, science-based innovations, such as new materials, often require the presence, and participation, of established companies in order to create value. © 2012 IEEE.
Resumo:
Users’ initial perceptions of their competence are key motivational factors for further use. However, initial tasks on a mobile operating system (OS) require setup procedures, which are currently largely inconsistent, do not provide users with clear, visible and immediate feedback on their actions, and require significant adjustment time for first-time users. This paper reports on a study with ten users, carried out to better understand how both prior experience and initial interaction with two touchscreen mobile interfaces (Apple iOS and Google Android) affected setup task performance and motivation. The results show that the reactions to setup on mobile interfaces appear to be partially dependent on which device was experienced first. Initial experience with lower-complexity devices improves performance on higher-complexity devices, but not vice versa. Based on these results, the paper proposes six guidelines for designers to design more intuitive and motivating user interfaces (UI) for setup procedures. The preliminary results indicate that these guidelines can contribute to the design of more inclusive mobile platforms and further work to validate these findings is proposed.
Resumo:
The physical meaning and methods of determining loudness were reviewed Loudness is a psychoacoustic metric which closely corresponds to the perceived intensity of a sound stimulus. It can be determined by graphical procedures, numerical methods, or by commercial software. These methods typically require the consideration of the 1/3 octave band spectrum of the sound of interest. The sounds considered in this paper are a 1 kHz tone and pink noise. The loudness of these sounds was calculated in eight ways using different combinations of input data and calculation methods. All the methods considered are based on Zwicker loudness. It was determined that, of the combinations considered, only the commercial software dBSonic and the loudness calculation procedure detailed in DIN 45631 using 1/3 octave band levels filtered using ANSI S1.11-1986 gave the correct values of loudness for a 1 kHz tone. Comparing the results between the sources also demonstrated the difference between sound pressure level and loudness. It was apparent that the calculation and filtering methods must be considered together, as a given calculation will produce different results for different 1/3 octave band input. In the literature reviewed, no reference provided a guide to the selection of the type of filtering that should be used in conjunction with the loudness computation method.
Generalized Spike-and-Slab Priors for Bayesian Group Feature Selection Using Expectation Propagation
Resumo:
Impedance control can be used to stabilize the limb against both instability and unpredictable perturbations. Limb posture influences motor noise, energy usage and limb impedance as well as their interaction. Here we examine whether subjects use limb posture as part of a mechanism to regulate limb stability. Subjects performed stabilization tasks while attached to a two dimensional robotic manipulandum which generated a virtual environment. Subjects were instructed that they could perform the stabilization task anywhere in the workspace, while the chosen postures were tracked as subjects repeated the task. In order to investigate the mechanisms behind the chosen limb postures, simulations of the neuro-mechanical system were performed. The results indicate that posture selection is performed to provide energy efficiency in the presence of force variability.