999 resultados para Research grants
Resumo:
Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS) has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene–nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials.
Resumo:
Many commentators argue that domestic food waste is strongly influenced by consumer behaviours. This article reports on a study using mixed-methods to identify key factors responsible for promoting consumer behaviours that lead to domestic food waste through the lens of the Value-Belief-Norm (VBN) theory. Based on the study’s findings, three factors are proposed that cause behaviours that lead to food waste: supply knowledge – does a consumer know what food they have available; location knowledge – does a consumer know where to locate food items, and; food literacy – to what degree do past experience and acquired knowledge impact on a consumer’s food consumption and wastage practices. We analyse the study’s findings in light of a review of literature about consumer food wastage behaviours and in turn, present new insights into consumer behaviour, food waste, and the use of technology to reduce food waste.
Resumo:
Planning techniques for large scale earthworks have been considered in this article. To improve these activities a “block theoretic” approach was developed that provides an integrated solution consisting of an allocation of cuts to fills and a sequence of cuts and fills over time. It considers the constantly changing terrain by computing haulage routes dynamically. Consequently more realistic haulage costs are used in the decision making process. A digraph is utilised to describe the terrain surface which has been partitioned into uniform grids. It reflects the true state of the terrain, and is altered after each cut and fill. A shortest path algorithm is successively applied to calculate the cost of each haul, and these costs are summed over the entire sequence, to provide a total cost of haulage. To solve this integrated optimisation problem a variety of solution techniques were applied, including constructive algorithms, meta-heuristics and parallel programming. The extensive numerical investigations have successfully shown the applicability of our approach to real sized earthwork problems.
Resumo:
This paper investigates the teaching and learning of fractions to Indigenous adult learners in a Civil Construction Certificate Course. More specifically it explores why the use of materials is critical to building knowledge and understanding. This focus is important for two reasons. First, it allows for considerations of a trainer’s approach for teaching fractions and, second it provides insights into how adult learners can be supported with representing their practical experiences of fractions to make generalisation thus building on their knowledge and learning experiences. The paper draws on teaching episodes from an Australian Research Council funded Linkage project that investigates how mathematics is taught and learned in Certificate Courses, here, Certificate 11 in Civil Construction. Action research and decolonising methods (Smith, 1999) were used to conduct the research. Video excerpts which feature one trainer and three students are analysed and described. Findings from the data indicate that adult learners need to be supported with materials to assist with building their capacity to know and apply understandings of fractions in a range of contexts, besides construction. Without materials and where fractions are taught via pen and paper tasks, students are less likely to retain and apply fraction ideas to their Certificate Course. Further they are less likely to understand decimals because of limited understanding of fractions.
Resumo:
In this article, we investigate eight and nine year old girls’ school and home use of the popular game Minecraft and the ways in which the girls ‘bring themselves into being’ through talk and digital production in the social spaces of the classroom and within the game’s multiplayer online world. This work was conducted as part of a broader digital games in education project involving primary and secondary school-aged students in Australia and focuses specifically on data collected from an all-girls primary school in Brisbane. We investigate the processes of identity construction that occur as the girls undertake practices of curatorship (Potter, 2012) to display their knowledge of Minecraft through discussion of the game, both ‘in world’ and in face-to-face interactions, and as they assemble resources within and around the game to design, build and display their creations and share stories about their game play. The article begins with a consideration of recent scholarship focussing on children, learning and digital culture and literacy practices before explaining how Minecraft is, in many ways, an exemplary instance of a digital game that promotes and enables complex practices of digital participation. We then introduce the concepts of performativity and recognition (Butler 1990, 2004, 2005) which, we argue, provide productive ways to theorise identity work within affinity groups. The article then outlines some background to the research project and our methodology before providing analysis of the data in the second half of the article. We conclude by outlining the implications of our investigation for the conceptualisation of learning spaces as affinity groups and for considering digital participation as curatorship.
Resumo:
Chronic leg ulcers are costly to manage for health service providers. Although evidence-based care leads to improved healing rates and reduced costs, a significant evidence-practice gap is known to exist. Lack of access to specialist skills in wound care is one reason suggested for this gap. The aim of this study was to model the change to total costs and health outcomes under two versions of health services for patients with leg ulcers: routine health services for community-living patients; and care provided by specialist wound clinics. Mean weekly treatment and health services costs were estimated from participants’ data (n=70) for the twelve months prior to their entry to a study specialist wound clinic, and prospectively for 24 weeks after entry. For the retrospective phase mean weekly costs of care were $AU130.30 (SD $12.64) and these fell to $AU53.32 (SD $6.47) for the prospective phase. Analysis at a population level suggests if 10,000 individuals receive 12 weeks of specialist evidence-based care, the cost savings are likely to be AU$9,238,800. Significant savings could be made by the adoption of evidence-based care such as that provided by the community and outpatient specialist wound clinics in this study.
Resumo:
We investigate the utility to computational Bayesian analyses of a particular family of recursive marginal likelihood estimators characterized by the (equivalent) algorithms known as "biased sampling" or "reverse logistic regression" in the statistics literature and "the density of states" in physics. Through a pair of numerical examples (including mixture modeling of the well-known galaxy dataset) we highlight the remarkable diversity of sampling schemes amenable to such recursive normalization, as well as the notable efficiency of the resulting pseudo-mixture distributions for gauging prior-sensitivity in the Bayesian model selection context. Our key theoretical contributions are to introduce a novel heuristic ("thermodynamic integration via importance sampling") for qualifying the role of the bridging sequence in this procedure, and to reveal various connections between these recursive estimators and the nested sampling technique.
Resumo:
Dose-finding designs estimate the dose level of a drug based on observed adverse events. Relatedness of the adverse event to the drug has been generally ignored in all proposed design methodologies. These designs assume that the adverse events observed during a trial are definitely related to the drug, which can lead to flawed dose-level estimation. We incorporate adverse event relatedness into the so-called continual reassessment method. Adverse events that have ‘doubtful’ or ‘possible’ relationships to the drug are modelled using a two-parameter logistic model with an additive probability mass. Adverse events ‘probably’ or ‘definitely’ related to the drug are modelled using a cumulative logistic model. To search for the maximum tolerated dose, we use the maximum estimated toxicity probability of these two adverse event relatedness categories. We conduct a simulation study that illustrates the characteristics of the design under various scenarios. This article demonstrates that adverse event relatedness is important for improved dose estimation. It opens up further research pathways into continual reassessment design methodologies.
Resumo:
We study two problems of online learning under restricted information access. In the first problem, prediction with limited advice, we consider a game of prediction with expert advice, where on each round of the game we query the advice of a subset of M out of N experts. We present an algorithm that achieves O(√(N/M)TlnN ) regret on T rounds of this game. The second problem, the multiarmed bandit with paid observations, is a variant of the adversarial N-armed bandit game, where on round t of the game we can observe the reward of any number of arms, but each observation has a cost c. We present an algorithm that achieves O((cNlnN) 1/3 T2/3+√TlnN ) regret on T rounds of this game in the worst case. Furthermore, we present a number of refinements that treat arm- and time-dependent observation costs and achieve lower regret under benign conditions. We present lower bounds that show that, apart from the logarithmic factors, the worst-case regret bounds cannot be improved.
Resumo:
Adversarial multiarmed bandits with expert advice is one of the fundamental problems in studying the exploration-exploitation trade-o. It is known that if we observe the advice of all experts on every round we can achieve O(√KTlnN) regret, where K is the number of arms, T is the number of game rounds, and N is the number of experts. It is also known that if we observe the advice of just one expert on every round, we can achieve regret of order O(√NT). Our open problem is what can be achieved by asking M experts on every round, where 1 < M < N.
Resumo:
We present PAC-Bayes-Empirical-Bernstein inequality. The inequality is based on combination of PAC-Bayesian bounding technique with Empirical Bernstein bound. It allows to take advantage of small empirical variance and is especially useful in regression. We show that when the empirical variance is significantly smaller than the empirical loss PAC-Bayes-Empirical-Bernstein inequality is significantly tighter than PAC-Bayes-kl inequality of Seeger (2002) and otherwise it is comparable. PAC-Bayes-Empirical-Bernstein inequality is an interesting example of application of PAC-Bayesian bounding technique to self-bounding functions. We provide empirical comparison of PAC-Bayes-Empirical-Bernstein inequality with PAC-Bayes-kl inequality on a synthetic example and several UCI datasets.
Resumo:
The electrodeposition of copper onto copper, gold, palladium and glassy carbon (GC) electrodes via a hydrogen bubble templating method is reported. It is found that the composition of the underlying electrode material significantly influences the morphology of the copper electrodeposit. Highly ordered porous structures are achieved with Cu and Au electrodes, however on Pd this order is disrupted and a rough randomly oriented surface is formed whereas on GC a bubble templating effect is not observed. Chronopotentiograms recorded during the electrodeposition process allows bubble formation and detachment from the surface to be monitored where distinctly different potential versus time profiles are observed at the different electrodes. The porous Cu surfaces are characterised with scanning electron microscopy, X-ray diffraction and cyclic voltammetric measurements recorded under alkaline conditions. The latter demonstrates that there are active sites present on electrodeposited copper whose coverage and reactivity depend on the underlying electrode material. The most active Cu surface is achieved at a Pd substrate for both the hydrogen evolution reaction and the catalytic reduction of ferricyanide ions with thiosulphate ions. This demonstrates that the highly ordered porous structure on the micron scale which typifies the morphology that can be achieved with the hydrogen bubbling template method is not required in producing the most effective material.
Resumo:
Plant based dried food products are popular commodities in global market where much research is focused to improve the products and processing techniques. In this regard, numerical modelling is highly applicable and in this work, a coupled meshfree particle-based two-dimensional (2-D) model was developed to simulate micro-scale deformations of plant cells during drying. Smoothed Particle Hydrodynamics (SPH) was used to model the viscous cell protoplasm (cell fluid) by approximating it to an incompressible Newtonian fluid. The visco-elastic characteristic of the cell wall was approximated to a Neo-Hookean solid material augmented with a viscous term and modelled with a Discrete Element Method (DEM). Compared to a previous work [H. C. P. Karunasena, W. Senadeera, Y. T. Gu and R. J. Brown, Appl. Math. Model., 2014], this study proposes three model improvements: linearly decreasing positive cell turgor pressure during drying, cell wall contraction forces and cell wall drying. The improvements made the model more comparable with experimental findings on dried cell morphology and geometric properties such as cell area, diameter, perimeter, roundness, elongation and compactness. This single cell model could be used as a building block for advanced tissue models which are highly applicable for product and process optimizations in Food Engineering.
Resumo:
Condensation technique of degree of freedom is first proposed to improve the computational efficiency of meshfree method with Galerkin weak form for elastic dynamic analysis. In the present method, scattered nodes without connectivity are divided into several subsets by cells with arbitrary shape. Local discrete equation is established over each cell by using moving Kriging interpolation, in which the nodes that located in the cell are used for approximation. Then local discrete equations can be simplified by condensation of degree of freedom, which transfers equations of inner nodes to equations of boundary nodes based on cells. The global dynamic system equations are obtained by assembling all local discrete equations and are solved by using the standard implicit Newmark’s time integration scheme. In the scheme of present method, the calculation of each cell is carried out by meshfree method, and local search is implemented in interpolation. Numerical examples show that the present method has high computational efficiency and good accuracy in solving elastic dynamic problems.
Resumo:
Magnetic resonance imaging (MRI) offers the opportunity to study biological tissues and processes in a non-disruptive manner. The technique shows promise for the study of the load-bearing performance (consolidation) of articular cartilage and changes in articular cartilage accompanying osteoarthritis. Consolidation of articular cartilage involves the recording of two transient characteristics: the change over time of strain and the hydrostatic excess pore pressure (HEPP). MRI study of cartilage consolidation under mechanical load is limited by difficulties in measuring the HEPP in the presence of the strong magnetic fields associated with the MRI technique. Here we describe the use of MRI to image and characterize bovine articular cartilage deforming under load in an MRI compatible consolidometer while monitoring pressure with a Fabry-Perot interferometer-based fiber-optic pressure transducer.